Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

Computer Architecture

Micro-Programmed Control

Outline

- Micro-Programmed Control
 - Control Unit Implementation
 - Hardwired ImplementationMicro-programmed Control
 - Control Unit Organization
 - Micro-instruction Types
 - Organization of Control Memory
 - Sequencing Techniques
 - Address Generation
 - Microinstruction Execution
 - Control Unit Organization
 - Microinstruction Encoding

Control Unit Implementation

- Hardwired implementation - Combinatorial circuit
- Microprogrammed implementation

Hardwired Implementation (1)

- Control unit inputs
- · Flags and control bus
 - Each bit means something
- · Instruction register
 - Op-code causes different control signals for each different instruction
 - Unique logic for each op-code
 - Decoder takes encoded input and produces single output
 - -n binary inputs and 2^n outputs

Hardwired Implementation (2)

- Clock
 - Repetitive sequence of pulses
 - Useful for measuring duration of micro-ops
 - Must be long enough to allow signal propagation
 - Different control signals at different times within instruction cycle
 - Need a counter with different control signals for t1, t2 etc.

Copyright 2000 N. AYDIN. All rights reserved.

Problems With Hard Wired Designs

- Complex sequencing & micro-operation logic
- · Difficult to design and test
- · Inflexible design
- · Difficult to add new instructions

Copyright 2000 N. AYDIN. All rights reserved.

Control Unit Organization

- · Today's large microprocessor
 - Many instructions and associated register-level hardware
 - Many control points to be manipulated
- This results in control memory that
 - Contains a large number of words
 - corresponding to the number of instructions to be executed
 - Has a wide word width
 - Due to the large number of control points to be manipulated

Micro-program Word Length

· Based on 3 factors

manipulated

- Maximum number of simultaneous microoperations supported
- The way control information is represented or encoded
- The way in which the next micro-instruction address is specified

Micro-instruction Types

- Vertical micro-programming

 Each micro-instruction specifies single (or few) micro-operations to be performed
- Horizontal micro-programming
 - Each micro-instruction specifies many different micro-operations to be performed in parallel

Next Address Decision

- Depending on ALU flags and control buffer register
 - Get next instruction
 - Add 1 to control address register
 - Jump to new routine based on jump
 - microinstruction

 Load address field of control buffer register into control address register
 - Jump to machine instruction routine
 - · Load control address register based on opcode in IR

Pros and Cons

- Advantages of Microprogramming
 - Simplifies design of control unit
 - Cheaper
 - Less error-prone
- Disadvantages of Microprogramming
 Slower

Tasks Done By Microprogrammed Control Unit

- Microinstruction sequencing

 Get the next microinstruction from the control memory
- Microinstruction execution

 Generate the control signals needed to execute the microinstruction
- In designing the control unit, these tasks must be considered together,
 - because both affect the format of the microinstruction
 - and the timing of control unit

Sequencing Techniques

- Generation of the control memory addres for the next instruction is based on...
 - current microinstruction,
 - condition flags, and
 - contents of IR,
- A number of categories exist.
- These categories are based on...
 - format of address information:
 - Two address fields
 - Single address field
 - Variable format

Branch Control Logic: Variable Format

Address Generation

- Looked at the sequencing problem from the point of format considerations and general logic requirement
- Another view point is to consider the various ways in which the next address is computed
- · Can be divided into two main techniques
 - Explicit techniques

· Address is explicitly available in the microinstruction

- Implicit techniques
 - · Require additional logic to generate address

Address Generation

- Explicit techniques have been discussed:
 With a two-field approach, two alternative addresses are available with each microinstruction.
 - Using either a single address field or a variable format, various branch instructions can be implemented.
- A conditional branch instruction depends on the...
 ALU flags
 - part of the opcode or address mode fields of the machine instruction
 - parts of a selected register, such as the sign bit
 - status bits within the CU

Address Generation

- Three main implicit techniques:
- Mapping
 - Opcode portion of a machine instruction must be mapped into a microinstruction address
 - This occurs only once per instruction cycle
- · Adding
 - Two portions of an address are combined to form the complete address
- Residual control
 - Involves the use of a microinstruction address that has previously been saved in temporary storage within the CU.

Address Generation

Explicit	Implicit
Two-field	Mapping
Unconditional Branch	Addition
Conditional branch	Residual control

Copyright 2000 N. AYDIN. All rights reserved.

Microinstruction Execution

- The microinstruction cycle is the basic event on a microprogrammed processor
- Each cycle is made up of two events
 - Fetch
 - · Determined by generation of microinstruction address
 - Execute
 - Effect is to generate control signals
 - · Some control points internal to processor
 - Rest go to external control bus or other interface

Control Unit Organization

How to Encode

- Consider that there are K different internal and external control signals
- Not all of the possible combinations will be used.
- For example:
 - Two sources cannot be gated to same destination
 - Register cannot be source and destination
 - Only one pattern presented to ALU at a time
 Only one pattern presented to external control bus at a time
- Require Q < 2K which can be encoded with $\log_2 Q < K$ bits
- Require Q < 2R which can be encoded with $\log_2 Q < R$ bits • In practice this form of encoding is not used for the following reasons:
 - As difficult to program as pure decoded scheme
 - Requires complex slow control logic module
- Instead, some compromises are made as follows:
 - More bits than necessary are used to encode the possible combinations
 Some combinations that are physically allowable are not possible to
 - Some c encode

Specific Encoding Techniques

- · Microinstruction organized as set of fields
- · Each field contains code
- · Activates one or more control signals
 - Organize format into independent fields - Field depicts set of actions (pattern of control signals)
 - Actions from different fields can occur simultaneously
- Alternative actions that can be specified by a field are mutually exclusive
 - Only one action specified for field could occur at a time

Organizing encoded micro instruction in to fields

- Two approaches ca be taken to organizing encoded micro instruction in to fields:
 - Functional encoding
 - Identifies functions within the machine and designates fields by function type.
 - For example, if various sources can be used for transferring data ta the accumulator, one field can be designated for this purpose, with each code specifying a different source
 - Resource encoding
 - Views the machine as consisting of a set of independent resources and devotes one field to each (e.g., I/O, memory, ALU)

Direct Encoding

• Another aspect of encoding is whether it is direct or indirect

