Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr
nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

Computer Architecture

CPU Structure and
Function

Outline CPU Structure
- CPU Structure « A CPU is responsible for... |
— Registers — fetching instructions (] =
— Instruction Cycle interpreting instructions E
— Data Flow fetching data I

— Instruction Pipelining
— Dealing with conditional Branches

processing data
writing data

CPU With Systems Bus
CPU Internal Structure

Registers

« Top level of memory hierarchy
 Temporary storage

+ User-visible registers

— Enable the machine- or assembly language
programmer to minimize main memory references
by optimizing use of registers

+ Control and status registers

— Used by the control unit to control the operation of
the processor and by priviliged, operating system
programs to control the execution of programs

Registers

User Visible Registers

— General Purpose registers
— Data registers

— Address registers

— Condition Codes (flags)

» Control & Status Registers

— Program Counter (PC)
« Contains the address of an instruction to be fetched
— Instruction Decoding Register (IR)
« Contains the instruction most recently fetched
— Memory Address Register (MAR)
« Contains the addres of location in memory
— Memory Buffer Register (MBR)

« Contains a word or data to be written to memory or the word most
recently read

Copyright 2000 N. AYDIN. All rights
reserved.

mailto:naydin@yildiz.edu.tr
mailto:nizamettinaydin@gmail.com

Program Status Word

A set of bits containing status information
Includes Condition Codes (flags)
Sign
+ sign of last result
- Zero
« set when the result is 0
— Carry

« set if an operation resulted in a carry (addition) into or borrow (subtraction) out of a
high order bit

Equal
« setif alogical compare result is equality
Overflow
« used to indicate arithmetic overflow
— Interrupt enable/disable
+ used to enable or disable interrupts
Supervisor
+ Indicates whether the processor is executing in superviser mode or user mode

« Certain privileged instructions can be executed only in supervisor mode, and certain
areas of memory can be accessed only in supervisor mode

Example Register Organizations

Data Registers General Registers General Registers

o A EAX X
(0] BX Base EBX BX
D2 ox Cownt. ECX (&
D3 nx Thatu EDX 3
D4
D5 ESP P
D6 EBP P
07 ESL il

EDI T

Address Registers
AB Program Status
Al [FAGSRegsier |
Az [Tnstruction Pointer |
A3
A4
AS {e) BO38S - Pentium 11
A6
AT Program Status
AT [Cimirme |
Flags
Program Status
(h) BO86
Status Regisier
1) MC68000

Instruction Cycle

Instruction Cycle
— Fetch

— Execute
Indirect
— Interrupt M

Feich

Indirect Cycle

— May require memory access to fetch operands

— Indirect addressing requires more memory accesses
— Can be thought of as additional instruction subcycle

Instruction Cycle State Diagram

Indirection Indirection

Operand
address
calculati

operation
decoding

Tnstructi
address
calculatior

Instruction complete,
fieteth next instruction

Rt for string
or vector data

Data Flow (Instruction Fetch)

Depends on CPU design o

In general following events take || e
place in an instruction cycle: [

Fetch M

— PC contains address of next
instruction

Address moved to MAR
Address placed on address bus
— Control unit requests memory read

— Result placed on data bus, copied
to MBR, then to IR

Meanwhile PC incremented by 1

Address Data Control
Bus

Data Flow (Data Fetch)

* IR is examined

« If indirect addressing, indirect
cycle is performed

— Right most N bits of MBR
transferred to MAR
Control unit requests memory
read
Result (address of operand)
moved to MBR

Address Data Control
Bus Bus Bus

Copyright 2000 N. AYDIN. All rights

reserved.

Data Flow (Execute)

+ May take many forms
+ Depends on instruction being executed
« May include

— Memory read/write

— Input/Output

— Register transfers

— ALU operations

Data Flow (Interrupt)

 Current PC saved to allow
resumption after interrupt

 Contents of PC copied to MBR

* Special memory location (e.g.
stack pointer) loaded to MAR

» MBR written to memory

» PC loaded with address of
interrupt handling routine

+ Next instruction (first of interrupt
handler) can be fetched

Address Data Cantrol
Bus Bus Bas

Some strategies to increase the computer performance

« Faster circuitry

« Multiple registers
« Cache memory

« Parallel processing
« Pipelining

- Etc...

Instruction Pipelining-

* Similar to assembly line in a manifacturing plant
» Remember that an instruction cycle has a number of stages

Indirection

Indirection

+ Here, instruction cycle can be divided into up to 10 tasks

Prefetch-Improved Performance

+ Fetch accessing main
memory

1 Sl sew

« Execution usually does
not access main memory
+ Can fetch next
instruction during
execution of current
Iy S— instruction
« Called instruction prefetch or fetch overlap
But performance is not doubled:
« Fetch usually shorter than execution
« Prefetch more than one instruction?
« Any jump or branch means that prefetched instructions are not the
required instructions

» Add more stages to improve performance

We New bl Wt

Dacaed

Pipelining
Consider the following decompositions of the instruction processing:

» Fetch instruction (FI)
Read the next expected instruction into a buffer
+ Decode instruction (DI)
Determine the opcode and the operand specifiers
» Calculate operands (CO)
— Calculate the effective address of each source operand
» Fetch operands (FO)
Fetch each operand from memory
« Execute instructions (EI)
Perform the indicated operation
» Write operand (WO)
— Store the result in memory

« Overlap these operations (6 stage pipeline)

Copyright 2000 N. AYDIN. All rights
reserved.

Timing Diagram for Instruction Pipeline Operation

Time

1123 |4|5|6|7|8|9|10|11]12]13|14
Instruction 1 | F | o1 |co|Fo| & [wo
Instruction 2 FI | Dl [co|Fo| Bl |wo
Instruction 3 Fi | Dl [co|Fo| & |wo
Instruction 4 Fi | DI [co|Fo| & |wO
Instruction 5 FI | DI |co|Fo| &1 |wo
Instruction 6 Fi [D |co|Fof e |wo
Instruction 7 FIl | DI |co|Fo| B |WO
Instruction 8 FI | DI |co|FO| EI |[WO
Instruction 9 FI | o |co|Fo| & [wo

The Effect of a Conditional Branch on Instruction Pipeline Operation

Time Branch Penalty
112|3|4|5|6|7|8]|9|10[11[12]|13]14

Instruction 1 | g | o1 |co|Fo | & |wo

Instruction 2 Fi | Dl [co|Fo| EI [wo

Instruction 3 FI | DI |cO|FO| EI | WO

Instruction 4 FI | DI |co|Fo

Instruction 5 FI | o1 |co

Instruction 6 Fi | DI

Instruction 7 Fi
Instruction 15 Fi | DI |co|Fo| El [wo
Instruction 16 Fl | DI [CO|FO| EI | WO

Six Stage Instruction Pipeline

Fetch

Decode
Instruction

DI

Speedup Factors with Instruction Pipelining

Sy et

Cycle time of an instruction

pipeline:

r=maxlg,J+d =7, +d 1<i<k
i

7 = Time delay of the circuitry in

the ith stage

7, = Maximum stage delay s : % 2 = =

k = Number of stages

d = Time delay of a latch

(equivalent to a clock pulse)

[P ——

Total time for a pipeline:

Ten = [k +(n _1)]7

« Multiple Streams

« Prefetch Branch Target
* Loop buffer

 Branch prediction

« Delayed branching

Dealing with conditional Branches

Multiple Streams

« Have two pipelines

« Prefetch each branch into a separate pipeline
» Use appropriate pipeline

« Leads to bus & register contention

« Multiple branches lead to further pipelines
being needed

Copyright 2000 N. AYDIN. All rights
reserved.

Prefetch Branch Target

« Target of branch is prefetched in addition to
instructions following branch

+ Keep target until branch is executed
+ Used by IBM 360/91

Loop Buffer

» Very fast memory
» Maintained by fetch stage of pipeline
 Check buffer before fetching from memory

Branch address . Very gOOd for
small loops or
jumps

. Instruction (o be
Loop Buffer decoded in case of hit
(256 bytes)

Most significant address bits
— i
compared to determine hit

- Used by CRAY-1

Branch Prediction (1)

* Predict never taken
— Assume that jump will not happen
— Always fetch next instruction
- 68020 & VAX 11/780

— VAX will not prefetch after branch if a page fault
would result (O/S v CPU design)

* Predict always taken
— Assume that jump will happen
— Always fetch target instruction

Branch Prediction (2)

« Predict by Opcode

— Some instructions are more likely to result in a
jump than others

— Can get up to 75% success
» Taken/Not taken switch
— Based on previous history
— Good for loops
+ Delayed Branch
— Do not take jump until you have to
— Rearrange instructions

Branch Prediction

Flowchart

State diagram

Dealing With Branches

Next sequentisl
addirm

(4 Predict never taken seate oy

Brand Mis
Hanling

() Erzneh history able strategy

prefiy addiessvegister

Copyright 2000 N. AYDIN. All rights
reserved.

Intel 80486 Pipelining (5 stage)

Fetch
From cache or external memory

Put in one of two 16-byte prefetch buffers
— Fill buffer with new data as soon as old data consumed

— Average 5 instructions fetched per load

Independent of other stages to keep buffers full

Decode stage 1 (D1)
Opcode & address-mode info
At most first 3 bytes of instruction

Can direct D2 stage to get rest of instruction

Decode stage 2 (D2)

— Expand opcode into control signals

— Computation of complex address modes
Execute (EX)

ALU operations, cache access, register update

Writeback (WB)
— Update registers & flags

— Results sent to cache & bus interface write buffers

80486 Instruction Pipeline Examples

Fach | DI D2 EX WB
[Faen | o1 [o2 [Ex [v]
D1 D2 EX WB

MOV Regl, Mem1

MOV Men, Regl

(@) No Dt Losael Delay n the Pipeline

Fach [D1 | D2 [EX | wB MOV Regl, Mem1
Fach | DI D2 | EX | MOV Rk (Regl)

(b) Painter Load Delay

Fach | DI | D2 | EX | WB CMP Regl, Tmm
Fach | DI | D2 | EX Jee Target
Feieh | DI | D2 | EX | Targa

() Branch lustruction Timing

31 32
{a) Integer Unit
Type Number Length (bits) Purpose
General H 32 General-purpese nser registers
Segment 6 16 Contain segment selectors A 16 /15 o
Flags ' 52 stmmandeontl bits YTATVIR] [N 10 [o[o[]T[s[Z] [a] [F[[c
" v || CIM|F T|PL |F|F(F|F|F|F F F F
Lrstmction Foirter L 32 Instroction painter
(b) Floating Point Unit Identification flag DF = Direction flag
Virtual interrupt pending IE
Type Number Length (bits) Purpose Virtual interrupt flag TE
" : - - - Alignment check SE
meric old losting.point mambers G o
Comml 1 16 Cantrol bits Resume flag AF Auxiliary carry flag
Status 1 16 Status bits Nested task flag PE atity flag
Tag Word ' 16 spesifies coments o nameric VO privilege level CF = Carry flag
regisis OF = Overflow flag
Lstmction Pointer 1 +8 Points ta i rstmction intermpted
by exception
Data Pairter 1 +8 Points to operand interwpted by
exception
33 34,
HEEEHENEE Interrupts
o slElefelaleluli e — Maskable
a0
CR3 Page Directory Base c|w
ot Nonmaskable
CR2 Page Fault Linear Address .
« Exceptions
CR1
NEN AT NERERE Processor detected
CRO |G| D|W M| P E|T|S|M|P|E]
TGS Bww TG — Programmed
.
PCE = Performance Counter Enable PG = Paging Interrupt vector table
PGE Page Global Enable CD = Cache Disable H H
MCE Machine Check Enable NW = Not Write Through - EaCh Interrupt type aSS|gned a number
PAE Physical Address Bxtension AM = Alignment Mask
PSE = Page Size Extensions WP = Wiite Protect Index to vector table
DE Debug Extensions NE = Numeric Error s
TSD = Time Stamp Disable ET = Bxtension Type 256 * 32 bit interrupt vectors
PVI Protected Mode Virtual lnterrupt TS = Task Swilched . . I
VME Virtual 8086 Mode Extensions EM = Emulation .
PCD Page-level Cache Disable MP = Monitor Coprocessor 5 prlorlty C asses
PWT = Page-level Writes Transparent PE = Protection Enable
35 36

Copyright 2000 N. AYDIN. All rights

reserved.

Fised Point Unit Branch Processing Unit Floating Poim Unit

PowerPC User Visible Registers

5 0 31
(Conditon] EFRD

)

a 63

[Lok
Tot

PowerPC Register Formats
)

| Byte Count '

Summ ary overflow: set to | toindicate an overflow occurred during the exection of an
instruction; remains | untilreset by software

Overflow. set 10 | Lo indicate a overflow occurred during the exection of an instruction; res
to 0 by next instruction if there is no overflow

CA = Camy: setio | Lo indicate carry out of bit 0 during the execution of an instruction.

Byte Count = Specifies number of byles to be transferred by Laad/Store String indexed instruction

o
slojc
OV A
S0 =

v o=

(a) Fixed-Point Exception Register (XER)

Tk Y Y EY oy |

|CR”ICR1|cmlcm‘cmlc&slcm‘cm'

foicger Floating-paint
instructions instructions

Copyright 2000 N. AYDIN. All rights
reserved.

) EPEST
0 31 0 31 (e
“ompare instctions
(b) Condition Register
37 38
39

