
Copyright 2000 N. AYDIN. All rights

reserved. 1

Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

1

Virtual Memory

2

• Cache memory enhances performance by

providing faster memory access speed.

• Virtual memory enhances performance by

providing greater memory capacity, without the

expense of adding main memory.

– Instead, a portion of a disk drive serves as an

extension of main memory.

• If a system uses paging, virtual memory partitions

main memory into individually managed page

frames, that are written (or paged) to disk when

they are not immediately needed.

Virtual Memory

3

• A physical address is the actual memory address

of physical memory.

• Programs create virtual addresses that are

mapped to physical addresses by the memory

manager.

• Page faults occur when a logical address

requires that a page be brought in from disk.

• Memory fragmentation occurs when the paging

process results in the creation of small, unusable

clusters of memory addresses.

Virtual Memory

4

Some frequently used terms for virtual memory

• Virtual address

– The logical or program address that the

process uses.

• Whenever the CPU generates an address, it is

always in terms of virtual address space.

• Physical address

– The real address in physical memory.

• Mapping

– The mechanism by which virtual addresses

are translated into physical ones

• very similar to cache mapping
5

Some frequently used terms for virtual memory

• Page frames
– The equal-size chunks or blocks into which main memory

(physical memory) is divided.

• Pages
– The chunks or blocks into which virtual memory (the logical

address space) is divided, each equal in size to a page
frame.

• Virtual pages are stored on disk until needed.

• Paging
– The process of copying a virtual page from disk to a page

frame in main memory.

• Fragmentation
– Memory that becomes unusable.

• Page fault
– An event that occurs when a requested page is not in main

memory and must be copied into memory from disk.

6

mailto:naydin@yildiz.edu.tr
mailto:nizamettinaydin@gmail.com

Copyright 2000 N. AYDIN. All rights

reserved. 2

• Main memory and virtual memory are divided into

equal sized pages.

• The entire address space required by a process

need not be in memory at once.

• Some parts can be on disk, while others are in

main memory.

• Further, the pages allocated to a process do not

need to be stored contiguously-- either on disk or

in memory.

• In this way, only the needed pages are in

memory at any time, the unnecessary pages are

in slower disk storage.

Virtual Memory

7

To access data at a given virtual address

1. Extract the page number from the virtual address.

2. Extract the offset from the virtual address.

3. Translate the page number into a physical page frame
number by accessing the page table.

A. Look up the page number in the page table (using the virtual
page number as an index).

B. Check the valid bit for that page.
1. If the valid bit = 0, the system generates a page fault and the operating

system must intervene to
a. Locate the desired page on disk.

b. Find a free page frame (this may necessitate removing a “victim” page from
memory and copying it back to disk if memory is full).

c. Copy the desired page into the free page frame in main memory.

d. Update the page table. (The virtual page just brought in must have its frame
number and valid bit in the page table modified. If there was a “victim” page, its
valid bit must be set to zero.)

e. Resume execution of the process causing the page fault, continuing to Step B2.

2. If the valid bit = 1, the page is in memory.
a. a. Replace the virtual page number with the actual frame number.

b. b. Access data at offset in physical page frame by adding the offset to the frame
number for the given virtual page.

8

An example

• Suppose that we have a virtual address space of
28 words for a given process (this means the
program generates addresses in the range 0 to
25510 which is 00 to FF16), and physical memory of
4 page frames (no cache).

• Assume also that pages are 32 words in length.

• Virtual addresses contain 8 bits, and physical
addresses contain 7 bits

– (4 frames of 32 words each is 128 words, or 27).

• Suppose, also, that some pages from the process
have been brought into main memory.

• Next figure illustrates the current state of the
system.

9

• Information concerning the location of each page,

whether on disk or in memory, is maintained in a

data structure called a page table (shown below).
– There is one page table for each active process.

An example

10

• When a process generates a virtual address, the

operating system translates it into a physical

memory address.

• To accomplish this, the virtual address is divided

into two fields:

– a page field
• determines the page location of the address

– an offset field
• indicates the location of the address within the page

• The logical page number is translated into a

physical page frame through a lookup in the page

table.

An example

11

An example

• Format for an 8-Bit Virtual
Address with 25 = 32 Word
Page Size

• Suppose the system now generates the virtual
address 1310 = 0D16 = 000011012.
– the page field P = 0002

– the offset field = 011012

• To continue the translation process
– use the 000 value of the page field as an index into the

page table.

– Virtual page 0 maps to physical page frame 2 = 102.

– Thus the translated physical address becomes

• page frame = 2,

• offset = 13.

12

Copyright 2000 N. AYDIN. All rights

reserved. 3

• If the valid bit is zero in the page table entry for

the logical address, this means that the page is

not in memory and must be fetched from disk.

– This is a page fault.

– If necessary, a page is evicted from memory and is

replaced by the page retrieved from disk, and the valid

bit is set to 1.

• If the valid bit is 1, the virtual page number is

replaced by the physical frame number.

• The data is then accessed by adding the offset to

the physical frame number.

Virtual Memory

13

• As an example, suppose a system has a virtual address space

of 8K and a physical address space of 4K, and the system

uses byte addressing.

• The page size is 1024.
– We have 213/210 = 23 virtual pages.

• A virtual address has 13 bits (8K = 213) with 3 bits for the page

field and 10 for the offset,

– because the page size is 1024.

• A physical memory address requires 12 bits (4K = 212), the first

2 bits for the page frame and the trailing 10 bits the offset.

Virtual Memory

14

• Suppose we have the page table shown below.

• What happens when CPU generates address

545910 = 10101010100112?

Virtual Memory

15

• The address 10101010100112 is converted to

physical address 010101010011

– because the page field 101 is replaced by frame

number 01 through a lookup in the page table.

Virtual Memory

16

If the valid bit is zero in the page table entry for the logical address,

this means that the page is not in memory and must be fetched from

disk.

This is a page fault.

If necessary, a page is evicted from memory and is replaced by

the page retrieved from disk, and the valid bit is set to 1.

• What happens when the CPU generates address

10000000001002?

Virtual Memory

17

• Effective access time (EAT) takes all levels of

memory into consideration.

• Thus, virtual memory is also a factor in the

calculation, and we also have to consider page

table access time.

• Suppose a main memory access takes 200ns,

the page fault rate is 1%, and it takes 10ms to

load a page from disk.

• We have:

EAT = 0.99(200ns + 200ns) + 0.01(10ms) = 100396 ns.

Virtual Memory

18

Copyright 2000 N. AYDIN. All rights

reserved. 4

• Even if we had no page faults, the EAT would be

400ns because memory is always read twice:

– First to access the page table, and second to load the

page from memory.

• Because page tables are read constantly, it

makes sense to keep them in a special cache

called a translation look-aside buffer (TLB).

• TLBs are a special associative cache that stores

the mapping of virtual pages to physical pages.

– The next slide shows how all the pieces fit together.

Virtual Memory

19

Using the TLB

20

Virtual Memory

21

• Another approach to virtual memory is the use of

segmentation.

• Instead of dividing memory into equal-sized pages, virtual

address space is divided into variable-length segments,
– often under the control of the programmer.

• A segment is located through its entry in a segment table,
– which contains the segment’s memory location and a bounds limit

that indicates its size.

• After a page fault, the operating system searches for a

location in memory large enough to hold the segment that

is retrieved from disk.

Virtual Memory

22

• Both paging and segmentation can cause

fragmentation.

• Paging is subject to internal fragmentation

because a process may not need the entire

range of addresses contained within the page.

– Thus, there may be many pages containing unused

fragments of memory.

• Segmentation is subject to external

fragmentation,

– which occurs when contiguous chunks of memory

become broken up as segments are allocated and

deallocated over time.

Virtual Memory

23

• Large page tables are cumbersome and slow, but with its

uniform memory mapping, page operations are fast.

• Segmentation allows fast access to the segment table,

but segment loading is labor-intensive.

• Paging and segmentation can be combined to take

advantage of the best features of both by assigning fixed-

size pages within variable-sized segments.

• Each segment has a page table.

– This means that a memory address will have three fields,

• one for the segment,

• another for the page,

• a third for the offset.

Virtual Memory

24

Copyright 2000 N. AYDIN. All rights

reserved. 5

Cache vs. Virtual Memory

• Cache speeds up memory access

• Virtual memory increases amount of

perceived storage

– independence from the configuration and

capacity of the memory system

– low cost per bit

25

• The Pentium architecture supports both paging and

segmentation, and they can be used in various

combinations including unpaged unsegmented,

segmented unpaged, and unsegmented paged.

• The processor supports two levels of cache (L1 and L2),

both having a block size of 32 bytes.

• The L1 cache is next to the processor, and the L2 cache

sits between the processor and memory.

• The L1 cache is in two parts: and instruction cache (I-

cache) and a data cache (D-cache).

– The next slide shows this organization schematically.

Real-World Example

26

Real-World Example

27 28

