### **Computer Architecture**

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

# **Internal Memory**

#### Outline

- Semiconductor main memory
- Random Access Memory
   Dynamic RAM
  - Static RAM
- Read Only Memory
- Memory Organisation
- Error Correction
- Advanced DRAM Organization





| Memory Type                            | Category              | Erasure                      | Write<br>Mechanism | Volatility  |
|----------------------------------------|-----------------------|------------------------------|--------------------|-------------|
| Random-access memory<br>(RAM)          | Read-write<br>memory  | Electrically,<br>byte-level  | Electrically       | Volatile    |
| Read-only memory (ROM)                 | Read-only<br>memory   | Not possible                 | Masks              | Nonvolatile |
| Programmable ROM (PROM)                |                       |                              | Electrically       |             |
| Erasable PROM (EPROM)                  | Read-mostly<br>memory | UV light,<br>chip-level      |                    |             |
| Electrically Erasable PROM<br>(EEPROM) |                       | Electrically,<br>byte-level  |                    |             |
| Flash memory                           |                       | Electrically,<br>block-level |                    |             |

.

a

Copyright 2000 N. AYDIN. All rights reserved.

#### Random Access Memory

- Read/Write
- Volatile
- Temporary storage
- Two types of RAM:
  - Dynamic RAM (DRAM)
    - Main (Primary) memory uses DRAM for capacity
  - Static RAM (SRAM)
    - Caches use SRAM for speed

#### **Dynamic RAM**

- · Bits stored as charge in capacitors
- · Charges leak
- · Need refreshing even when powered
- Simpler construction
- Smaller per bit
- Less expensive
- Need refresh circuits
- Slower
- Main memory
- Essentially analogue - Level of charge determines value



#### Static RAM

- · Bits stored as on/off switches
- · No charges to leak
- No refreshing needed when powered
- · More complex construction
- Larger per bit
- More expensive
- · Does not need refresh circuits
- Faster
- Cache
- Digital
- Uses flip-flops





#### **Read Only Memory**

- Permanent storage
   Nonvolatile
- Used in:
  - Microprogramming
  - Library subroutines
  - Systems programs (BIOS)
  - Function tables

# Types of ROM • Written during manufacture - Very expensive for small runs • Programmable (once) - PROM • Needs special equipment to program • Read "mostly" • Erasable Programmable (EPROM) • Erasable (EEPROM) • Takes much longer to write than read

- Flash memory
  - Erase whole memory electrically

#### **Memory Organisation**

- A 16Mbit chip can be organised as 1M of 16 bit words
- A bit per chip system has 16 lots of 1Mbit chip with bit 1 of each word in chip 1 and so on
- A 16Mbit chip can be organised as a 2048 x 2048 x 4bit array
  - Reduces number of address pins
    - Multiplex row address and column address
    - 11 pins to address (2<sup>11</sup>=2048)
    - Adding one more pin doubles range of values so x4 capacity







Copyright 2000 N. AYDIN. All rights reserved.









# **Error Correction**

- Sources of error in computing system
  - Hard Failure
    - Permanent defect
  - Soft Error
    - Random, non-destructive
    - No permanent damage to memory
- Detected using Hamming error correcting code



# Advanced DRAM Organization

- Basic DRAM same since first RAM chips
- Enhanced DRAM
  - Contains small SRAM as well
  - SRAM holds last line read
- Cache DRAM
  - Larger SRAM component
  - Use as cache or serial buffer

#### Synchronous DRAM

- Access is synchronized with an external clock
- Address is presented to RAM
- RAM finds data (CPU waits in conventional DRAM)
- Since SDRAM moves data in time with system clock, CPU knows when data will be ready
- CPU does not have to wait, it can do something else
- Burst mode allows SDRAM to set up stream of data and fire it out in block





## RAMBUS

- Adopted by Intel for Pentium & Itanium
- Main competitor to SDRAM
- Vertical package all pins on one side
- Data exchange over 28 wires < cm long
- Bus addresses up to 320 RDRAM chips at 1.6Gbps
- Asynchronous block protocol
  - 480ns access time
  - Then 1.6 Gbps



#### **DDR SDRAM**

- SDRAM can only send data once per clock
- Double-Data-Rate SDRAM can send data twice per clock cycle
  - Rising edge and falling edge

#### **Cache DRAM**

- Mitsubishi
- Integrates small SRAM cache (16 kb) onto generic DRAM chip
- · Used as true cache
  - 64-bit lines
  - Effective for ordinary random access
- To support serial access of block of data
   E.g. refresh bit-mapped screen
  - CDRAM can prefetch data from DRAM into SRAM buffer
  - Subsequent accesses solely to SRAM

## **Memory Technology Cost**

- Bigger is slower
  - SRAM, 512 Bytes, sub-nanosec
  - SRAM, KByte~MByte, ~nanosec
  - DRAM, Gigabyte, ~50 nanosec
  - Hard Disk, Terabyte, ~10 millisec
- Faster is more expensive (dollars and chip area)
  - SRAM, < 10\$ per Megabyte
  - DRAM, < 1\$ per Megabyte
  - Hard Disk < 1\$ per Gigabyte</p>
  - These sample values scale with time
- Other technologies have their place as well – Flash memory, Phase-change memory (not mature yet)