
Copyright 2000 N. AYDIN. All rights 

reserved. 1

Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

1

Memory Hierarchy

2

Outline

• Introduction

• Characteristics

• Memory hierarchy

• Cache

• Mapping function

• Replacement algorithms

• Write policy

• Examples

3

Memory

• A computer consists 

of a set of 

components or 

modules of three 

basic types that 

communicate with 

each other.

– CPU

– Memory

– Input/Output

4

Introduction

• Memory lies at the heart of the stored-

program computer.

• In this lecture, we focus on memory 

organization and architecture.  

• A clear understanding of these ideas is 

essential for the analysis of system 

performance.

5

Memory in a Modern Computer

6

mailto:naydin@yildiz.edu.tr
mailto:nizamettinaydin@gmail.com


Copyright 2000 N. AYDIN. All rights 

reserved. 2

Characteristics

• Location

• Capacity

• Unit of transfer

• Access method

• Performance

• Physical type

• Physical characteristics

• Organisation

7

Characteristics

• Location

• CPU is the reference

– Internal

– External

• Capacity

– Word size

• The natural unit of organisation

– Number of words

• or Bytes

8

Characteristics

• Unit of Transfer

– Internal

• Usually governed by data bus width

– External

• Usually a block which is much larger than a word

– Addressable unit

• Smallest location which can be uniquely addressed

• Word internally

• Cluster on disks

9

Characteristics

• Access Methods…

– Sequential

• Start at the beginning and read through in order

• Access time depends on location of data and previous 

location

– e.g. tape

– Direct

• Individual blocks have unique address

• Access is by jumping to vicinity plus sequential search

• Access time depends on location and previous location

– e.g. disk

10

Characteristics

• …Access Methods

– Random

• Individual addresses identify locations exactly

• Access time is independent of location or previous access

– e.g. RAM

– Associative

• Data is located by a comparison with contents of a 

portion of the store

• Access time is independent of location or previous access

– e.g. cache

11

Characteristics

• Performance

– Access time

• Time between presenting the address and getting the 

valid data

– Memory Cycle time

• Time may be required for the memory to recover before 

next access

• Cycle time is access + recovery

– Transfer Rate

• Rate at which data can be moved

12



Copyright 2000 N. AYDIN. All rights 

reserved. 3

Characteristics

• Physical Types

– Semiconductor
• RAM

• ROM

• Flash

– Magnetic
• Disk & Tape

– Optical
• CD & DVD

– Others
• Bubble

– http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVka
WEub3JnL3dpa2kvQnViYmxlX21lbW9yeQ

• Hologram

– https://www.technologyreview.com/s/404603/holographic-memory/

13

Characteristics

• Physical Characteristics

– Decay

– Volatility

– Erasable

– Power consumption

• Organisation

– Physical arrangement of bits into words

– Not always obvious

• e.g. interleaved

14

Characteristics

• The Bottom Line

– How much?

• Capacity

– How fast?

• Time is money

– How expensive?

• So you want fast?

– It is possible to build a computer which uses only static 
RAM 

• This would be very fast

• This would need no cache

• This would cost a very large amount

15

Technology Trends

• Latency (Cycle Time, Access Time to Memory)

doesn’t improve (or very slowly improves) overtime

– Compared to DRAM size (capacity)

16

Processor-Memory Performance Gap

17

Who cares memory?

• We need to supply an instruction and data every

clock cycle!

• Memory Wall: 

– Processor vs DRAM speed disparity continues to grow

• Fact: 

– Large memories are slow and fast memories are small

• How do we create a memory that gives the 

illusion of being large, cheap and fast?

– With hierarchy of memory

– With parallelism in data transfers

18



Copyright 2000 N. AYDIN. All rights 

reserved. 4

Memory Hierarchy

• Why have memory hierarchy?

– We want both fast and large memory

– But we cannot achieve both with a single level of

memory

• Idea

– to have multiple levels of storage

• progressively bigger and slower as the levels are farther 

from the processor

– to ensure most of the data the processor needs is 

kept in the fast(er) level(s)

19

Memory Hierarchy

• Registers

– In CPU

• Internal or Main memory

– May include one or more levels of cache

– “RAM”

• External memory

– Backing store

• This storage organization can be thought of as 

a pyramid
20

Memory Hierarchy

• Registers

• L1 Cache

• L2 Cache

• Main memory

• Disk cache

• Disk

• Optical

• Tape

21

Cache

• Stores data so that future requests for that data 
can be served faster

– Cache hit: if the requested data is in the cache

– Otherwise it is a cache miss

• Two type of caches

– Instruction cache 

– Data cache

• Every general purpose computer built today 
includes caches

• Completely managed by the hardware, 
transparent to the programmer

22

A Typical Memory Hierarchy

• The principle of locality states that programs 

access a relatively small portion of the address 

space at any instant of time.

23

Locality

• Temporal Locality (locality in time)

– If a memory location is referenced then it will tend 

to be referenced again soon

• Keep most recently accessed data items closer to the

processor

24



Copyright 2000 N. AYDIN. All rights 

reserved. 5

Locality

• Spatial Locality (locality in space)

– If a memory location is referenced then the locations with

nearby addresses will tend to be referenced again soon

• Move blocks consisting of contiguous words closer to 

the processor

25

Memory Terminology

• Cache Block (or Cache line): 

– the minimum unit of information that is present (or not) in a 
cache or unit of transfer

• Hit: 

– Requested data is present in the upper level
• Hit Time: Time to access the upper level which consists of RAM 

access time + Time to determine hit/miss

• Hit Rate: The fraction of memory access found in the upper level

• Miss: 

– If the data is not found in the cache.
• Miss Rate = 1 - (Hit Rate)

• Miss Penalty: Time to replace a block in the upper level + Time to 
deliver the block the processor

• Hit Time << Miss Penalty

26

Memory Hierarchy- relative data size

27

How is the hierarchy managed?

• In general

• Registers <-> Memory

– by compiler (programmer?)

• Cache <-> Memory

– by the hardware

• Memory <-> Disks

– by the hardware and operating system (virtual 

memory)

– by the programmer (files)

28

Cache

• Small amount of fast memory

• Sits between normal main memory and CPU

• May be located on CPU chip or module

29

Cache

• The use of multiple levels of cache. 

• The L2 cache is slower and typically larger 
than the L1 cache, 

• The L3 cache is slower and typically larger 
than the L2 cache.

30



Copyright 2000 N. AYDIN. All rights 

reserved. 6

• The purpose of cache memory 
– to speed up accesses by storing recently used 

data closer to the CPU 

• It is much smaller than main memory 

• Its access time is a fraction of that of main 
memory.

• main memory is accessed by address,

• cache is typically accessed by content;
– hence, it is often called content addressable 

memory.
• Because of this, a single large cache memory isn’t 

always desirable
– it takes longer to search.

Cache

31

• The content that is addressed in content 

addressable cache memory is a subset of 

the bits of a main memory address called a 

field.

– The fields into which a memory address is 

divided provide a many-to-one mapping

between larger main memory and the smaller 

cache memory.

• Many blocks of main memory map to a single block 

of cache.  

• A tag field in the cache block distinguishes one 

cached memory block from another.

Cache

32

Typical Cache Organization

33

Cache/Main Memory Structure

• Main memory size:upto 2n words

• Each word has a unique n-bit address

• Fixed length blocks of K words each

• Number of blocks: M=2n/K

• Cache consists of C lines

• Each line contains K words + tag

• C << M

34

• The diagram below is a schematic of what cache looks 

like.

• Block 0 contains multiple words from main memory, 

identified with the tag 00000000.  

• Block 1 contains words identified with the tag 11110101.

• The other two blocks are not valid.

Cache/Main Memory Structure

35

Cache operation – overview

• Cash read flow chart Cash operation
– CPU requests contents of 

memory location

– Check cache for this data

– If present, get from cache 
(fast)

– If not present, read 
required block from main 
memory to cache

– Then deliver from cache 
to CPU

– Cache includes tags to 
identify which block of 
main memory is in each 
cache slot

36

RA: the read address



Copyright 2000 N. AYDIN. All rights 

reserved. 7

Elements of Cache Design

• Cache Addresses

• Logical

• Physical

• Cache Size

• Mapping Function

• Direct

• Associative

• Set associative

• Replacement Algorithm

• Least recently used

• First in first out

• Least frequently

used

• Random

• Write Policy

• Write through

• Write back

• Block Size

• Number of Caches

• Single or two level

• Unified or split

37

Cache Addresses

• Almost all nonembedded processors, and many 

embedded processors, support virtual Memory

– a facility that allows programs to address memory from 

a logical point of view, without regard to the amount of 

main memory physically available. 

• When virtual memory is used, the address fields 

of machine instructions contain virtual addresses. 

• For reads to and writes from main memory, a 

hardware memory management unit (MMU)

translates each virtual address into a physical 

address in main memory.

38

Cache Addresses

• When virtual addresses are used, the system 

designer may choose to place the cache 

between the processor and the MMU or 

between the MMU and main memory. 

• A logical cache, also known as a virtual cache, 

stores data using virtual addresses. 

– The processor accesses the cache directly, without 

going through the MMU. 

• A physical cache stores data using main 

memory physical addresses.

39

Cache Addresses

• cache access speed of the 

logical cache is faster than 

for a physical cache, 

because the cache can 

respond before the MMU 

performs an address 

translation. 

• The disadvantage has to do 

with the fact that most 

virtual memory systems 

supply each application with 

the same virtual memory 

address space. 

• That is, each application 

sees a virtual memory that 

starts at address 0. 

• Thus, the same virtual 

address in two different 

applications refers to two 

different physical addresses. 

• The cache memory must 

therefore be completely 

flushed with each

application context switch, 

or extra bits must be added 

to each line of the cache to

identify which virtual 

address space this address 

refers to.
40

Cache Size does matter

• We would like the size of the cache to be small 

enough so that the overall average cost per bit 

is close to that of main memory alone and large 

enough so that the overall average access time 

is close to that of the cache alone.

• Cost

– More cache is expensive

• Speed

– More cache is faster (up to a point)

– Checking cache for data takes time

41

Comparison of Cache Sizes

Processor Type Year of Introduction L1 cachea L2 cache L3 cache

IBM 360/85 Mainframe 1968 16 to 32 KB — —

PDP-11/70 Minicomputer 1975 1 KB — —

VAX 11/780 Minicomputer 1978 16 KB — —

IBM 3033 Mainframe 1978 64 KB — —

IBM 3090 Mainframe 1985 128 to 256 KB — —

Intel 80486 PC 1989 8 KB — —

Pentium PC 1993 8 KB/8 KB 256 to 512 KB —

PowerPC 601 PC 1993 32 KB — —

PowerPC 620 PC 1996 32 KB/32 KB — —

PowerPC G4 PC/server 1999 32 KB/32 KB 256 KB to 1 MB 2 MB

IBM S/390 G4 Mainframe 1997 32 KB 256 KB 2 MB

IBM S/390 G6 Mainframe 1999 256 KB 8 MB —

Pentium 4 PC/server 2000 8 KB/8 KB 256 KB —

IBM SP High-end server/ 
supercomputer

2000 64 KB/32 KB 8 MB —

CRAY MTAb Supercomputer 2000 8 KB 2 MB —

Itanium PC/server 2001 16 KB/16 KB 96 KB 4 MB

SGI Origin 2001 High-end server 2001 32 KB/32 KB 4 MB —

Itanium 2 PC/server 2002 32 KB 256 KB 6 MB

IBM POWER5 High-end server 2003 64 KB 1.9 MB 36 MB

CRAY XD-1 Supercomputer 2004 64 KB/64 KB 1MB —

42



Copyright 2000 N. AYDIN. All rights 

reserved. 8

Mapping Function

• Because there are fewer lines than main 

memory blocks, an algorithm is needed for

mapping main memory blocks into cache lines.

• Which main memory block currently occupies

a cache line?

• Three techniques can be used:

– Direct mapping

– Associative mapping

– Set associative mapping
43

Example System for Mapping Functions

• For all three cases, the example includes the
following elements:

• Cache can hold 64 kBytes

• Data are transferred between main memory and
the cache in blocks of 4 bytes

– i.e. cache is 16k = 214 lines of 4 bytes each

• Main memory consists of 16 MBytes

– 16 M = 224 , each byte directly adressable by 24 bit 
address

– So, we consider main memory to consist of 4 M 
blocks of 4 bytes each

44

• In a direct mapped cache consisting of m blocks of 
cache, block j of main memory maps to cache block 
i = j X mod m.

– Thus, if we 
have 10 blocks 
of cache, block 
7 of cache may 
hold blocks 7, 
17, 27, 37, . . . 
of main 
memory.

• Once a block of memory is copied into its slot in 
cache, a valid bit is set for the cache block to let the 
system know that the block contains valid data.

Direct Mapping

45

Direct Mapping

• Each block of main memory maps to only one cache line

– i.e. if a block is in cache, it must be in one specific place

– Mapping is expressed as i = j modulo m
• i = cache line number, j = main memory block number, m = number of 

lines in the cache

• Each main memory address can be viewed as consisting
of three fields

– Least Significant w bits identify unique word or byte within
a block of main memory

– Most Significant s bits specify one of the 2s blocks of main 
memory 

– The MSBs are split into a cache line field r and a tag of s-r
(most significant). 

• This field identifies one of the m = 2r lines of the cache.

46

Direct Mapping Cache Organization

47

Direct Mapping Cache Line Table

• The effect of this mapping is that blocks of 

main memory are assigned to lines of the cache

as follows:

Cache line Main Memory blocks held

0 0, m, 2m, 3m…2s-m

1 1,m+1, 2m+1…2s-m+1

. .

. .

. .

m-1 m-1, 2m-1,3m-1…2s-1

48



Copyright 2000 N. AYDIN. All rights 

reserved. 9

Direct Mapping Address Structure (for given example)

Tag  s-r Line or Slot  r Word  w

8 bits 14 bits 2 bits

• Main memory is 16 MByte = 224 Byte
– Total 24 bit address

• M = 64 / 4 = 16 K lines = 214 lines
– Line id field is 14 bits

• Block size is 4 Byte
– word id field is 2 bits 

• 22 bit block identifier
– 8 bit tag (= 22-14)

– 14 bit slot or line

• No two blocks in the same line have the same Tag field

• Check contents of cache by finding line and checking Tag

49

Direct Mapping Example

• Mapping for the

example:

Cache 

line Main Memory blocks held

0 000000, 010000, ..., FF0000

1 000004, 010004, ..., FF0004

. .

. .

. .

214-1 00FFFC, 01FFFC, ..., FFFFFC

50

Direct Mapping Summary

• Address length = (s + w) bits

• Number of addressable units = 2s+w words or 

bytes

• Block size = line size = 2w words or bytes

• Number of blocks in main memory = 2s+w/2w = 

2s

• Number of lines in cache = m = 2r

• Size of tag = (s – r) bits

51

Direct Mapping pros & cons

• Simple

• Inexpensive

• Fixed location for given block

– If a program accesses 2 blocks that map to the 

same line repeatedly, cache misses are very high

52

• Instead of placing memory blocks in 

specific cache locations based on memory 

address, 

– we could allow a block to go anywhere in cache.

• In this way, cache would have to fill up 

before any blocks are evicted.

• This is how fully associative cache works.  

• A memory address is partitioned into only 

two fields: the tag and the word.

Associative Mapping

53

Associative Mapping

• A main memory block can load into any line of 

cache

• Memory 

address is 

interpreted as 

tag and word

• Tag uniquely identifies block of memory

• Every line’s tag is examined for a match

• Cache searching gets expensive
54



Copyright 2000 N. AYDIN. All rights 

reserved. 10

Fully Associative Cache Organization

55

Tag   22 bits
Word

2 bits

Associative Mapping Address Structure (for given example)

• 22 bit tag stored with each 32 bit block of data

• Compare tag field with tag entry in cache to check 

for hit

• Least significant 2 bits of address identify which 16 

bit word is required from 32 bit data block

– e.g.

Address Tag Data Cache line

FFFFFC 3FFFFFC 24682468 3FFF

56

Associative Mapping Example

• Mapping for the example:

Memory address

0001 0110 0011 0011 1001 1100

1       6 3      3 9       C

tag

00 0101 1000 1100 1110 0111

0      5 8      C E      7

57

Associative Mapping Summary

• Address length = (s + w) bits

• Number of addressable units = 2s+w words or 

bytes

• Block size = line size = 2w words or bytes

• Number of blocks in main memory = 2s+w/2w = 

2s

• Number of lines in cache = undetermined

• Size of tag = s bits

58

• Set associative cache combines the ideas of direct mapped 
cache and fully associative cache.

• An N-way set associative 
cache mapping is like direct 
mapped cache in that a 
memory reference maps to 
a particular location in 
cache.

• Unlike direct mapped 
cache, a memory reference 
maps to a set of several 
cache blocks, 

– similar to the way in which fully 
associative cache works.

• Instead of mapping anywhere in the entire cache, a memory 
reference can map only to the subset of cache slots.

Set Associative Mapping

59

• The number of cache blocks per set in set 
associative cache varies according to overall 
system design.

• For example, a 2-way set associative cache 
can be conceptualized as shown in the 
schematic below.

• Each set contains two different memory 
blocks.

Set Associative Mapping

60



Copyright 2000 N. AYDIN. All rights 

reserved. 11

• In set associative cache mapping, a memory 

reference is divided into three fields: 

– tag, set, and word, as shown below.

• The word field chooses the word within the cache block, 

• The tag field uniquely identifies the memory address.

• The set field determines the set to which the memory 

block maps.

Set Associative Mapping

61

Set Associative Mapping Example

• 13 bit set number

• Block number in main memory is modulo 213

• 000000, 00A000, 00B000, 00C000 … 

– map to same set

62

Two Way Set Associative Cache Organization

63

Set Associative Mapping Address Structure (for given example)

• Use set field to determine cache set to look in

• Compare tag field to see if we have a hit

– e.g

Address Tag Data Set number

1FF 7FFC 1FF 12345678 1FFF

001 7FFC 001 11223344 1FFF

Tag 9 bits Set 13 bits
Word

2 bits

64

65

Two Way Set Associative Mapping Example Set Associative Mapping Summary

• Address length = (s + w) bits

• Number of addressable units = 2s+w words or 

bytes

• Block size = line size = 2w words or bytes

• Number of blocks in main memory = 2d

• Number of lines in set = k

• Number of sets = v = 2d

• Number of lines in cache = kv = k × 2d

• Size of tag = (s – d) bits

66



Copyright 2000 N. AYDIN. All rights 

reserved. 12

Replacement Algorithms

• Direct mapping

– Each block only maps to one line

– Replace that line

• Associative & Set Associative mapping
• These are hardware implemented algorithms (speed)

– Least Recently used (LRU)

– First in first out (FIFO)

• replace block that has been in cache longest

– Least frequently used

• replace block which has had fewest hits

– Random

67

Write Policy

• Must not overwrite a cache block unless main memory is up 
to date

• Multiple CPUs may have individual caches

• I/O may address main memory directly

• Two techniques
– Write through

• All writes go to main memory as well as cache

• Multiple CPUs can monitor main memory traffic to keep local (to CPU) 
cache up to date

• Lots of traffic

• Slows down writes

– Write back
• Updates initially made in cache only

• Update bit for cache slot is set when update occurs

• If block is to be replaced, write to main memory only if update bit is set

• Other caches get out of sync

• I/O must access main memory through cache

68

Pentium 4 Cache

• 80386 – no on chip cache

• 80486 – 8k using 16 byte lines and four way set associative 
organization

• Pentium (all versions) – two on chip L1 caches
– Data & instructions

• Pentium III – L3 cache added off chip

• Pentium 4
– L1 caches

• 8k bytes

• 64 byte lines

• four way set associative

– L2 cache 
• Feeding both L1 caches

• 256k

• 128 byte lines

• 8 way set associative

– L3 cache on chip

69

Intel Cache Evolution

Problem Solution
Processor on which feature 

first appears

External memory slower than the system bus. Add external cache using faster 

memory technology.

386

Increased processor speed results in external bus 

becoming a bottleneck for cache access.
Move external cache on-chip, 

operating at the same speed as the 

processor.

486

Internal cache is rather small, due to limited space on 

chip
Add external L2 cache using faster 

technology than main memory

486

Contention occurs when both the Instruction Prefetcher

and the Execution Unit simultaneously require access to 

the cache. In that case, the Prefetcher is stalled while the 

Execution Unit’s data access takes place.

Create separate data and 

instruction caches.

Pentium

Increased processor speed results in external bus 

becoming a bottleneck for L2 cache access.

Create separate back-side bus that 

runs at higher speed than the main 

(front-side) external bus. The BSB 

is dedicated to the L2 cache.

Pentium Pro

Move L2 cache on to the 

processor chip.

Pentium II

Some applications deal with massive databases and must 

have rapid access to large amounts of data. The on-chip 

caches are too small.

Add external L3 cache. Pentium III

Move L3 cache on-chip. Pentium 4

70

Pentium 4 Block Diagram

71

Pentium 4 Core Processor

• Fetch/Decode Unit

– Fetches instructions from L2 cache

– Decode into micro-ops

– Store micro-ops in L1 cache

• Out of order execution logic

– Schedules micro-ops

– Based on data dependence and resources

– May speculatively execute

• Execution units

– Execute micro-ops

– Data from L1 cache

– Results in registers

• Memory subsystem

– L2 cache and systems bus
72



Copyright 2000 N. AYDIN. All rights 

reserved. 13

Pentium 4 Design Reasoning

• Decodes instructions into RISC like micro-ops before L1 cache

• Micro-ops fixed length

– Superscalar pipelining and scheduling

• Pentium instructions long & complex

• Performance improved by separating decoding from scheduling & 
pipelining

– (More later – ch14)

• Data cache is write back

– Can be configured to write through

• L1 cache controlled by 2 bits in register

– CD = cache disable

– NW = not write through

– 2 instructions to invalidate (flush) cache and write back then invalidate

• L2 and L3 8-way set-associative 

– Line size 128 bytes

73

PowerPC Cache Organization

• 601 – single 32kb 8 way set associative

• 603 – 16kb (2 x 8kb) two way set associative

• 604 – 32kb

• 620 – 64kb

• G3 & G4
– 64kb L1 cache

• 8 way set associative

– 256k, 512k or 1M L2 cache
• two way set associative

• G5
– 32kB instruction cache

– 64kB data cache
74

PowerPC G5 Block Diagram

75

Internet Sources

• Manufacturer sites

– Intel

– IBM

– Motorola

• Search on cache

76

77


