
Copyright 2000 N. AYDIN. All rights

reserved. 1

Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

1

Performance Metrics

2

Objectives

• How can we meaningfully measure and

compare computer performance?

• Understand why program performance varies

– Understand how applications and the compiler

impact performance

– Understand how CPU impacts performance

– What trade-offs are involved in designing a CPU?

• Purchasing perspective vs design perspective

3 4

Outline

• Latency, delay, time

• Throughput

• Cost

• Power

• Energy

• Reliability

Basic Performance Metrics

• Latency, delay, time
– Lower is better

• Complete a task as soon as possible

– Measured in sec, s, ns

• Throughput (bandwith)
– Higher is better

• Complete as many tasks per time as possible

– Measured in bytes/sec, instructions/sec

• Cost
– Lower is better

• Complete tasks for as little money as possible

– Measured in $, TL, etc.

5

Basic Performance Metrics

• Power
– Lower is better

• Complete tasks while dissipating as few joules/sec as possible

• Energy
– Lower is better

• Complete tasks using as few joules as possible

– Measured in Joules, Joules/instruction

• Reliability
– Higher is better

• Complete tasks with low probability of failure

– Measured in Mean time to failure (MTTF)
• MTTF: the average time until a failure occurs

6

mailto:naydin@yildiz.edu.tr
mailto:nizamettinaydin@gmail.com

Copyright 2000 N. AYDIN. All rights

reserved. 2

Latency vs Throughput

• Madrid to Istanbul is about 3600 km

• Time:
– Aircraft 1 is faster than Aircraft 2

• 900/750 = 1.2 times or 20% faster

• Throughput:
– Aircraft 2 has a higher throughput

• (750*600)/(900*400) = 1.25 times the throughput or 25% more
throughput

7

Response Time vs Throughput

• Response time (latency)
– the time between the start and the completion of a task

• Important to individual users (passengers)

• Throughput (bandwidth)
– the total amount of work done in a given time

– Important to data center managers (airline)

• Different performance metrics are required
– to benchmark embedded and desktop computers,

• which are more focused on response time,

– to benchmark servers,
• which are more focused on throughput

8

Defining (Speed) Performance

• Minimizing the execution time maximizes the

performance:

performance of X = 1 / execution_time of X

• If X is n times faster than Y,

– then the performance ratio n is

performance of X execution_time of Y

--------------------- = -------------------------- = n

performance of Y execution_time of X

9

A Relative Performance Example

• If computer A runs a program in 10 seconds and
computer B runs the same program in 15 seconds,

– Which computer is faster?

– How much faster?

• We know that A is n times faster than B if
performance of A execution_time of B

--------------------- = -------------------------- = n

performance of B execution_time of A

• The performance ratio n is 15/10 =1.5

• So A is 1.5 times (50%) faster than B

10

Ratios of Measure: Side Note

• For bigger-is-better metrics,

– improved means increase

• Vnew = 2.5 * Vold

– A metric increased by 2.5 times (sometimes written 2.5x)

– A metric increased by 150% (x% increase == 0.01*x+1 times
increase)

• For smaller-is-better metrics,

– improved means decrease

• e.g., Latency improved by 2x, means latency decreased
by 2x (i.e., dropped by 50%)

• e.g., Battery life worsened by 50%, means battery life
decrease by 50%.

11

Examples

• Bigger-is-better examples
– Bandwidth per dollar (e.g., in networking (GB/s)/$)

– BW/Watt (e.g., in memory systems (GB/s)/W)

– Work/Joule (e.g., instructions/joule)

– In general
• Multiply by big-is-better metrics, divide by smaller-is-better

metrics

• Smaller-is-better examples
– Cycles/Instruction (i.e., Time per work)

– Latency * Energy -- Energy Delay Product

– In general:
• Multiply by smaller-is-better metrics, divide by bigger-is-

better metrics

12

Copyright 2000 N. AYDIN. All rights

reserved. 3

Clock Cycle and Clock Rate

• A clock cycle is a single electronic pulse of a CPU
– To synchronize different parts of the circuit

– To determine when events take place in the hardware

– Processor runs at a constant clock rate

– Clock cycle or tick or cycle = Discrete time interval

• Clock rate (frequency)
– Number of clock cycles per second in hertz

• 1 nsec (10-9) clock cycle => 1 GHz (109) clock rate

• 0.5 nsec clock cycle => 2 GHz clock rate

13

CPU Time (Execution Time)

• A program takes 15x1010 cycles to execute on a
computer with a clock cycle time of 500 picosec.

– How many seconds does it take for the program to execute?

CPU Time =Clock Cycles×Clock Cycle Time

=
Clock Cycles

Clock Rate

• Clock Cycles:

– How many cycles it takes for a program to execute!

• CPU Time (Execution time):

– How many seconds it takes for a program to execute!

14

CPU Time Example

• Computer A has a 2GHz clock rate, executes a

program in 10 sec (CPU time)

• Designing Computer B by aiming for 6 sec CPU

time

– With a faster clock, but this causes 1.2 × clock cycles

• What is Computer B’s clock rate?

Clock RateB =
Clock CyclesB
CPU TimeB

=
1.2 × Clock CyclesA

6s
Clock CyclesA = CPU TimeA × Clock RateA = 10s × 2GHz = 20 × 10 9

Clock RateB =
1.2 × 20 × 10 9

6s
=
24 × 10 9

6s
= 4GHz

15

Clock Cycles per Instruction (CPI)

• Not all instructions take the same amount of

time to execute

– There is a mix of instructions in a program

• E.g. Load, Store, ALU

– Need to know the frequency of the instructions

• Because instructions take different number of cycles to

execute

Clock Cycles = Instruction Count × Cycles per Instruction

16

Instruction Mix and CPI

• All these values depend on the particular hardware implementation,
not the ISA

• Values are for Intel’s
Nehalem processor

• Clock cycles per instruction (CPI)
– the average number of clock cycles each instruction takes to execute

– CPI is not the cycles required to execute a single instruction

– A way to compare two different implementations of the same
Instruction Set Architectures (ISA)

17

Comparing Computers

• Computers A and B implement the same ISA.

– Computer A has a clock cycle time of 250 ps and

an effective CPI of 2.0 for some program C

– Computer B has a clock cycle time of 500 ps and

an effective CPI of 1.2 for the same program.

• Which computer is faster and by how much?

Clock Cycles = Instruction Count×Cycles per Instruction

CPU Time = Instruction Count×CPI×Clock Cycles Time

=
Instruction Count×CPI

Clock Rate

18

Copyright 2000 N. AYDIN. All rights

reserved. 4

Comparing Computers

Clock Cycles = Instruction Count×Cycles per Instruction

CPU Time = Instruction Count×CPI×Clock Cycle Time

• Each computer executes the same number of
instructions, I, so
CPU timeA = I × 2.0 × 250 ps = 500 × I ps

CPU timeB = I × 1.2 × 500 ps = 600 × I ps

• Clearly, A is faster than B by the ratio of
execution times

performanceA execution_timeB 600 x I ps

------------------- = --------------------- = ---------------- = 1.2

performanceB execution_timeA 500 x I ps

19

CPU Performance

• Different programs do different amounts of work
– e.g., Playing a DVD vs writing a word document

• The same program may do different amounts of work
depending on its input
– Compiling a 1000-line program vs compiling a 100-line

program

• The same program may require a different number of
instructions on different ISAs
– MIPS vs. x86

• To make a meaningful comparison between two
computer systems, they must be doing the same work.
– They may execute a different number of instructions (e.g.,

because they use different ISAs or a different compilers)

– But the task they accomplish should be exactly the same.

20

CPU Performance

CPU time = Instruction_count × CPI / Clock Rate

Clock Rate = 1 / Clock Cycle

21

Compiler Benefits

• Comparing performance for bubble sort
– To sort 100,000 words with the array initialized to random

values

• The unoptimized code has the best CPI, the O1 version has the
lowest instruction count, but the O3 version is the fastest.

• Instruction count and CPI are not good performance
indicators in isolation

• Compiler optimizations are sensitive to the algorithm

22

Instruction Count

• Note that instruction count is dynamic
– its not the number of lines in the code, or

– number of lines in an assembly code that compiler generates

• Static instruction count refers to the program as it was
compiled

• Dynamic instruction count refers to the program at runtime

• Dynamic instruction count is more accurate
– For example, you have a loop in your program then some instructions get

executed more than once or

– In the presence of branches, some instructions may not be executed at all.

• Average CPI:

(5×1 + 1×44 + 1×21)/66= 1.06

23

Instruction Mix

• Measure MIPS instruction executions in

benchmark programs (e.g. SPEC)

– Consider making the common case fast

– Consider compromises

24

Copyright 2000 N. AYDIN. All rights

reserved. 5

Dynamic Frequency

• Most multi-core architectures nowadays support
dynamic voltage and frequency scaling (DVFS) to
adapt their speed to the system’s load and save
energy.
– Enabled by the request from the Operating System

• A core can exceed the its manufactured operation
frequency
– Intel’s Turbo Boost and AMD Turbo CORE

• Increased clock rate is limited by the power,
current and thermal limits
– This is not similar to hearth rate increase

– CPU runs at a higher rate for awhile, it is discrete

25 26

