Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr
nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

Performance Metrics

Objectives

« How can we meaningfully measure and
compare computer performance?
 Understand why program performance varies

— Understand how applications and the compiler
impact performance

— Understand how CPU impacts performance
— What trade-offs are involved in designing a CPU?

« Purchasing perspective vs design perspective

Outline

Latency, delay, time
Throughput

Cost

Power

Energy

Reliability

Basic Performance Metrics

* Latency, delay, time
— Lower is better
« Complete a task as soon as possible
— Measured in sec, ps, ns
» Throughput (bandwith)
— Higher is better
« Complete as many tasks per time as possible
— Measured in bytes/sec, instructions/sec
» Cost
— Lower is better
« Complete tasks for as little money as possible
— Measured in $, TL, etc.

Basic Performance Metrics

Power
— Lower is better
» Complete tasks while dissipating as few joules/sec as possible
Energy
— Lower is better
« Complete tasks using as few joules as possible
— Measured in Joules, Joules/instruction
Reliability
— Higher is better
« Complete tasks with low probability of failure
— Measured in Mean time to failure (MTTF)
* MTTF: the average time until a failure occurs

Copyright 2000 N. AYDIN. All rights
reserved.

mailto:naydin@yildiz.edu.tr
mailto:nizamettinaydin@gmail.com

Latency vs Throughput

« Madrid to Istanbul is about 3600 km

e Time:
Aircraft 1 is faster than Aircraft 2
+ 900/750 = 1.2 times or 20% faster
+ Throughput:
— Aircraft 2 has a higher throughput

« (750*600)/(900*400) = 1.25 times the throughput or 25% more
throughput

Response Time vs Throughput

Response time (latency)

— the time between the start and the completion of a task
« Important to individual users (passengers)

Throughput (bandwidth)

— the total amount of work done in a given time

— Important to data center managers (airline)

« Different performance metrics are required
— to benchmark embedded and desktop computers,
» which are more focused on response time,
— to benchmark servers,
« which are more focused on throughput

Defining (Speed) Performance

» Minimizing the execution time maximizes the
performance:

performance of X =1/ execution_time of X

« If X is n times faster than Y,
— then the performance ratio n is

performance of X execution_time of Y

=n

performance of Y execution_time of X

A Relative Performance Example

« If computer A runs a program in 10 seconds and
computer B runs the same program in 15 seconds,
— Which computer is faster?
— How much faster?

» We know that A is n times faster than B if
performance of A execution_time of B

= =n
execution_time of A

The performance ratio n is 15/10 =1.5
» So Ais 1.5 times (50%) faster than B

performance of B

Ratios of Measure: Side Note

« For bigger-is-better metrics,
improved means increase
¢ Vnew =25%* Vuld
— A metric increased by 2.5 times (sometimes written 2.5x)

— A metric increased by 150% (x% increase == 0.01*x+1 times
increase)

 For smaller-is-better metrics,
— improved means decrease

« e.g., Latency improved by 2x, means latency decreased
by 2x (i.e., dropped by 50%)

* e.g., Battery life worsened by 50%, means battery life
decrease by 50%.

Examples

+ Bigger-is-better examples
— Bandwidth per dollar (e.g., in networking (GB/s)/$)
— BW/Watt (e.g., in memory systems (GB/s)/W)
— Work/Joule (e.g., instructions/joule)
— In general

« Multiply by big-is-better metrics, divide by smaller-is-better
metrics

» Smaller-is-better examples
— Cycles/Instruction (i.e., Time per work)

— Latency * Energy -- Energy Delay Product
— In general:

« Multiply by smaller-is-better metrics, divide by bigger-is-
better metrics

Copyright 2000 N. AYDIN. All rights
reserved.

Clock Cycle and Clock Rate

» A clock cycle is a single electronic pulse of a CPU
— To synchronize different parts of the circuit
— To determine when events take place in the hardware
— Processor runs at a constant clock rate
— Clock cycle or tick or cycle = Discrete time interval
« Clock rate (frequency)
— Number of clock cycles per second in hertz

MOck Rate= 1/ Clock Cycle
| —

le—one clockeyete —!

« 1 nsec (10°) clock cycle => 1 GHz (10°) clock rate
« 0.5 nsec clock cycle =>2 GHz clock rate

CPU Time (Execution Time)

A program takes 15x101° cycles to execute on a
computer with a clock cycle time of 500 picosec.
— How many seconds does it take for the program to execute?

CPU Time =Clock CyclesxClock Cycle Time
_ Clock Cycles

" Clock Rate

» Clock Cycles:
— How many cycles it takes for a program to execute!
« CPU Time (Execution time):
— How many seconds it takes for a program to execute!

CPU Time Example

Computer A has a 2GHz clock rate, executes a
program in 10 sec (CPU time)
Designing Computer B by aiming for 6 sec CPU
time

With a faster clock, but this causes 1.2 x clock cycles
What is Computer B’s clock rate?

lock Clock Cyclesg 1.2 x Clock Cyclesp
Clock Rates = =5 Timey 6s
Clock Cycles, = CPU Timey X Clock Ratey = 10s X 2GHz = 20 x 10 °
12x20%x10° 24x10°

6s 65

Clock Rateg = = 4GHz

Clock Cycles per Instruction (CPI)

+ Not all instructions take the same amount of
time to execute
— There is a mix of instructions in a program
« E.g. Load, Store, ALU
— Need to know the frequency of the instructions

« Because instructions take different number of cycles to
execute

Clock Cycles = Instruction Count x Cycles per Instruction

Instruction Mix and CPI

All these values depend on the particular hardware implementation,
not the ISA

* Values are for Intel’s

Instruction Type Cycles
Nehalem processor
Integer +, -, |, &, branches 1

Integer Multiply 3.5

Integer Divide 11-100
Floating Point +, - 3.5
Sqrt 7-27

Load and Stores 1-100s

Clock cycles per instruction (CPI)
— the average number of clock cycles each instruction takes to execute
CPI is not the cycles required to execute a single instruction

A way to compare two different implementations of the same
Instruction Set Architectures (ISA)

Comparing Computers

» Computers A and B implement the same ISA.
Computer A has a clock cycle time of 250 ps and
an effective CPI of 2.0 for some program C
Computer B has a clock cycle time of 500 ps and
an effective CPI of 1.2 for the same program.

» Which computer is faster and by how much?

Clock Cycles = Instruction CountxCycles per Instruction
CPU Time = Instruction CountxCPIxClock Cycles Time
_ Instruction CountxCPI

Clock Rate

Copyright 2000 N. AYDIN. All rights
reserved.

Comparing Computers

Clock Cycles = Instruction CountxCycles per Instruction
CPU Time = Instruction CountxCPIxClock Cycle Time
» Each computer executes the same number of
instructions, I, so
CPU time, = | x 2.0 x 250 ps = 500 x | ps
CPU timeg = | x 1.2 x 500 ps = 600 x | ps
+ Clearly, A is faster than B by the ratio of
execution times

performance, execution_timeg 600 x | ps

execution_time,

=12

performanceg 500 x I ps

CPU Performance

Different programs do different amounts of work

— e.g., Playing a DVD vs writing a word document

The same program may do different amounts of work

depending on its input

— Compiling a 1000-line program vs compiling a 100-line
program

The same program may require a different number of

instructions on different ISAs

— MIPS vs. x86

» To make a meaningful comparison between two

computer systems, they must be doing the same work.

— They may execute a different number of instructions (e.g.,
because they use different ISAs or a different compilers)

— But the task they accomplish should be exactly the same.

CPU Performance

CPU time = Instruction_count x CPI / Clock Rate

Compiler Benefits

» Comparing performance for bubble sort
— To sort 100,000 words with the array initialized to random

Instruction_ CPI Clock Rate
count

Algorithm

X X
Programming X X
Language
Compiler X X
ISA X X

Clock Rate = 1/ Clock Cycle

values
optimizations Relative Clock cycles | Instr count cPl
levels on gee performance (M) (M)

None

1.00

158,615

114,938

138

01

237

66,990

37,470

1.79

02

238

66,521

39,993

166

03

241

65,747

44,993

1.46

 The unoptimized code has the best CPI, the O1 version has the
lowest instruction count, but the O3 version is the fastest.

* Instruction count and CPI are not good performance
indicators in isolation

» Compiler optimizations are sensitive to the algorithm

Instruction Count

+ Note that instruction count is dynamic
its not the number of lines in the code, or
— number of lines in an assembly code that compiler generates
« Static instruction count refers to the program as it was
compiled
» Dynamic instruction count refers to the program at runtime
» Dynamic instruction count is more accurate

For example, you have a loop in your program then some instructions get
executed more than once or

In the presence of branches, some instructions may not be executed at all.

Type CPl Stalic# Dyng

mem | 5 1 1 | * Average CPI:

it | 1 8 | 4 (5%1 + 1x44 + 1x21)/66= 1.06
br 1 2 21

Total | 1.06 9 66

Instruction

Mix

» Measure MIPS instruction executions in
benchmark programs (e.g. SPEC)

Consider making the common case fast

Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP
Arithmetic add, sub, addi 16% 48%
Data transfer 1w, sw, 1b, Tbu, 35% 36%

Th, Thu, sb, Tui |
Logical and, or, nor, andi, 12% 4%
ori, s11, srl

Cond. Branch beq, bne, sit, 34% 8%

s1ti, sltiu
Jump j, jr, jal 2% 0%

Copyright 2000 N. AYDIN. All rights
reserved.

energy.
— Enabled

frequency

* Increased

Dynamic Frequency

» Most multi-core architectures nowadays support
dynamic voltage and frequency scaling (DVFS) to
adapt their speed to the system’s load and save

by the request from the Operating System

A core can exceed the its manufactured operation

— Intel’s Turbo Boost and AMD Turbo CORE

clock rate is limited by the power,

current and thermal limits
— This is not similar to hearth rate increase
— CPU runs at a higher rate for awhile, it is discrete

Copyright 2000 N. AYDIN. All rights

reserved.

