
Copyright 2000 N. AYDIN. All rights

reserved. 1

Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

1

Arithmetic for Computers

2

3

Outline

• Arithmetic & Logic Unit

• Integer Representation
– Sign-Magnitude

– Two’s Complement

– Integer Arithmetic
• Addition and Subtraction

• Multiplication

• Booth’s Algorithm

• Division

• Floating Point
– Floating Point Arithmetic

• Addition and Subtraction

• Multiplication and Division

4

Arithmetic & Logic Unit

• Does the calculations

• Everything else in the

computer is there to

service this unit

• Handles integers

• May handle floating point (real) numbers

• May be separate FPU (maths co-processor)

• May be on chip separate FPU (486DX +)

Arithmetic & Logic Unit

• (Top) A 1-bit ALU that
performs AND, OR, and
addition on a and b or a'
and b'

– includes a direct input that
is connected to perform the
set on less than operation

• (Bottom) a 1-bit ALU for
the most significant bit.

– has a direct output from the
adder for the less than
comparison called Set.

5

Arithmetic & Logic Unit

• A 32-bit ALU
constructed from the 31
copies of the 1-bit ALU
and one 1-bit ALU in the
bottom of the figüre in
previous slide.

• The Less inputs are
connected to 0 except for
the least significant bit,
which is connected to
the Set output of the
most significant bit.

6

mailto:naydin@yildiz.edu.tr
mailto:nizamettinaydin@gmail.com

Copyright 2000 N. AYDIN. All rights

reserved. 2

Arithmetic & Logic Unit

• The final 32-

bit ALU

with a Zero

detector

7

Arithmetic & Logic Unit

• The values of the three ALU control lines, Bnegate, and

Operation, and the corresponding ALU operations

• The symbol commonly used to represent

an ALU

8

9

Integer Representation

• Only have 0 & 1 to represent everything

• Positive numbers stored in binary

– e.g. 41=00101001

• No minus sign

• No period

• Sign-Magnitude

• Two’s complement

10

Sign-Magnitude

• Left most bit is

sign bit

• 0 means positive

• 1 means negative

• +18 = 00010010

• -18 = 10010010

• Problems

– Need to consider both sign and magnitude in

arithmetic

– Two representations of zero (+0 and -0)

0 if2

0 if2

1

2

0

1

2

0

n

n

i

i

i

n

n

i

i

i

aa

aa

A

11

Two’s Complement

• +3 = 00000011

• +2 = 00000010

• +1 = 00000001

• +0 = 00000000

• -1 = 11111111

• -2 = 11111110

• -3 = 11111101

2

0

1

1 22
n

i

i

i

n

n aa

12

Characteristics of Twos Complement Representation

and Arithmetic

Copyright 2000 N. AYDIN. All rights

reserved. 3

13

Benefits

• One representation of zero

• Arithmetic works easily

• Negating is fairly easy

3 = 00000011

Boolean complement gives 11111100

Add 1 to LSB 11111101

14

Negation Special Case 1

• 0 = 00000000

• Bitwise not 11111111

• Add 1 to LSB +1

• Result 1 00000000

• Overflow is ignored, so:

• - 0 = 0

15

Negation Special Case 2

• -128 = 10000000

• bitwise not 01111111

• Add 1 to LSB +1

• Result 10000000

• So:

• -(-128) = -128

• Monitor MSB (sign bit)

• It should change during negation

16

Range of Numbers

• 8 bit 2s complement

– +127 = 01111111 = 27 -1

– -128 = 10000000 = -27

• 16 bit 2s complement

– +32767 = 011111111 11111111 = 215 - 1

– -32768 = 100000000 00000000 = -215

17

Conversion Between Lengths

• Positive number pack with leading zeros

• +18 = 00010010

• +18 = 00000000 00010010

• Negative numbers pack with leading ones

• -18 = 10010010

• -18 = 11111111 10010010

• i.e. pack with MSB (sign bit)

18

Fixed-Point Representation

• Number representation discussed so far also

referred as fixed point.

– Because the radix point (binary point) is fixed and

assumed to be to the right of the rightmost digit

(least significant digit).

Copyright 2000 N. AYDIN. All rights

reserved. 4

Integer Arithmetic

• Binary Addition

19

Carry in

Carry out

20

Integer Arithmetic

• Negation:
– In sign magnitude

• simply invert the sign bit.

– In twos complement:
• apply twos complement operation

• Normal binary addition
– Monitor sign bit for overflow

• Subtraction
– Take twos complement of subtrahend and add to

minuhend
• i.e. a - b = a + (-b)

• So we only need addition and complement circuits

21

Addition and Subtraction

• Overflow rule

– If two numbers are added and they are both

positive or both negative, then overflow occurs if

and only if the result has the opposite sign

22

Addition of Numbers in Twos Complement Representation

23

Subtraction of Numbers in 2s Complement Representation (M – S)

24

Hardware for Addition and Subtraction

Copyright 2000 N. AYDIN. All rights

reserved. 5

25

Multiplication

• Complex

• Work out partial product for each digit

• Take care with place value (column)

• Add partial products

• Example:

1011 Multiplicand (11 dec)

x 1101 Multiplier (13 dec)

1011 Partial products

0000

1011

1011

10001111 Product (143 dec)

• Note: need double length result

Unsigned Binary Multiplication

• Flowchart

26

Unsigned Binary Multiplication

• Block diagram of ALU circuitry

27 28

Execution of Example

29

Signed Binary Multiplication

• This does not work!

• Solution 1

– Convert to positive if required

– Multiply as above

– If signs were different, negate answer

• Solution 2

– Booth’s algorithm

Signed Binary Multiplication

• Booth’s Multiplier

30

Copyright 2000 N. AYDIN. All rights

reserved. 6

Signed Binary Multiplication

• Flowchart of

Booth’s

Multiplier

31 32

Example of Booth’s Algorithm

33

Division of Unsigned Binary Integers

• More complex than multiplication

– Negative numbers are really bad!

• Based on long division

Unsigned Binary Division

• Flowchart

34

Unsigned Binary Division

• Example using

division of the

unsigned integer 7

by the unsigned

integer 3

35

Unsigned Binary Division

• Schematic diagram of ALU circuitry

36

Copyright 2000 N. AYDIN. All rights

reserved. 7

Signed Binary Division

• With signed division, we negate the quotient if

the signs of the divisor and dividend disagree.

• The remainder and the divident must have the

same signs.

• The governing equation is as follows:

Remainder = Divident - (Quotient · Divisor) ,

– and the following four cases apply:

37

Signed Binary Division

• Flowchart

38

Signed Binary Division

• Example using division of +7 by the integer +3

and -3

39

Signed Binary Division

• Example using division of -7 by the integer +3

and -3

40

Division in MIPS

• MIPS supports multiplication and division using existing hardware,
primarily the ALU and shifter.

– MIPS needs one extra hardware component –
• a 64-bit register able to support sll and sra instructions.

• The upper (high) 32 bits of the register contains the remainder resulting
from division.

– This is moved into a register in the MIPS register stack (e.g., $t0) by the mfhi
command.

• The lower 32 bits of the 64-bit register contains the quotient resulting from
division.

– This is moved into a register in the MIPS register stack by the mflo command.

• In MIPS assembly language code, signed division is supported by the div
instruction and unsigned division, by the divu instruction.

• MIPS hardware does not check for division by zero.
– Thus, divide-by-zero exception must be detected and handled in system

software.

• A similar comment holds for overflow or underflow resulting from division.

41

Division in MIPS

• MIPS ALU that supports integer arithmetic operations (+,-,x,/)

42

Copyright 2000 N. AYDIN. All rights

reserved. 8

43

Real Numbers

• Numbers with fractions

• Could be done in pure binary

– 1001.1010 = 24 + 20 +2-1 + 2-3 =9.625

• Where is the binary point?

• Fixed?

– Very limited

• Moving?

– How do you show where it is?

44

Real Numbers (exponantials)

• 123 000 000 000 000

1.23 X 1014

• 0.0000000000000123

1.23 X 10-14

45

Floating Point

• +/- .significand x 2exponent

• Point is actually fixed between sign bit and body of

mantissa

• Exponent indicates place value (point position)

46

Floating Point Examples

47

Signs for Floating Point

• Mantissa is stored in 2s complement

• Exponent is in excess or biased notation

– e.g. Excess (bias) 128 means

– 8 bit exponent field

– Pure value range 0-255

– Subtract 128 to get correct value

– Range -128 to +127

48

Normalization

• FP numbers are usually normalized

• i.e. exponent is adjusted so that leading bit

(MSB) of mantissa is 1

• Since it is always 1 there is no need to store it

• (c.f. Scientific notation where numbers are

normalized to give a single digit before the

decimal point

• e.g. 3.123 x 103)

Copyright 2000 N. AYDIN. All rights

reserved. 9

49

FP Ranges

• For a 32 bit number

– 8 bit exponent

– +/- 2256 1.5 x 1077

• Accuracy

– The effect of changing lsb of mantissa

– 23 bit mantissa 2-23 1.2 x 10-7

– About 6 decimal places

Expressible Numbers

• 2s complement integer (32 bits)

• Floating point

50

51

IEEE 754

• Standard for floating point storage

• 32 bit standard (8 bit biased exponent)

– Single format

• 64 bit standard (11 bit biased exponent)

– Double format

FP example

• FPnumber = (-1)S · (1 + Significand) · 2(Exponent - Bias)

• Example:

52

53

IEEE 754 Format Parameters

54

Interpretation of IEEE 754 Floating-Point Numbers

Copyright 2000 N. AYDIN. All rights

reserved. 10

55

Floating-Point Numbers and Arithmetic Operations

56

A floating-point operation may produce one of these conditions:

• Exponent overflow:
– A positive exponent exceeds the maximum possible expo-nent

value.
– In some systems, this may be designated as +∞ or -∞.

• Exponent underflow:
– A negative exponent is less than the minimum possible exponent

value (e.g., -200 is less than -127).
– This means that the number is too small to be represented, and it

may be reported as 0.

• Significand underflow:
– In the process of aligning significands, digits may flow off the

right end of the significand.
– Some form of rounding is required.

• Significand overflow:
– The addition of two significands of the same sign may result in a

carry out of the most significant bit.
– This can be fixed by realignment.

57

FP Arithmetic +/-

• Check for zeros

• Align significands (adjusting exponents)

• Add or subtract significands

• Normalize result

58

FP Arithmetic +/- Phase 1

• Zero check

– Because addition and subtraction are identical

except for a sign change, the process begins by

changing the sign of the subtrahend if it is a

subtract operation.

– Next, if either operand is 0, the other is reported as

the result.

59

FP Arithmetic +/- Phase 2

• Significand alignment

– Numbers needs to be manipulated so that the two exponents

are equal.

• To see the need for aligning exponents, consider the

following decimal addition:
• (123 x 100) + (456 x 10-2)

– Clearly, we cannot just add the significands.

• The digits must first be set into equivalent positions,

– that is, the 4 of the second number must be aligned with the 3 of the first.

– Under these conditions, the two exponents will be

equal,which is the mathematical condition under which two

numbers in this form can be added. Thus,
• (123 x 100) + (456 x 10-2) = (123 x 100) + (4.56 x 100) = 127.56x100

60

FP Arithmetic +/- Phase 2

• Alignment may be achieved by shifting either the
smaller number to the right (increasing its exponent) or
shifting the larger number to the left.
• Because either operation may result in the loss of digits, it is

the smaller number that is shifted; any digits that are lost are
therefore of relatively small significance.

• The alignment is achieved by repeatedly shifting the
magnitude portion of the significand right 1 digit and
incrementing the exponent until the two exponents are
equal.
• Note that if the implied base is 16, a shift of 1 digit is a shift of

4 bits.
• If this process results in a 0 value for the significand, then the other

number is reported as the result.

• Thus, if two numbers have exponents that differ significantly,
the lesser number is lost.

Copyright 2000 N. AYDIN. All rights

reserved. 11

61

FP Arithmetic +/- Phase 3

• Addition

– The two significands are added together, taking

into account their signs.

• Because the signs may differ, the result may be 0.

– There is also the possibility of significand overflow

by 1 digit.

– If so, the significand of the result is shifted right

and the exponent is incremented.

– An exponent overflow could occur as a result;

• this would be reported and the operation halted.

62

FP Arithmetic +/- Phase 4

• Normalization

– Normalization consists of shifting significand digits

left until the most significant digit (bit, or 4 bits for

base-16 exponent) is nonzero.

– Each shift causes a decrement of the exponent and

thus could cause an exponent underflow.

– Finally, the result must be rounded off and then

reported.

63

FP Addition & Subtraction Flowchart

64

FP Arithmetic x/

• Check for zero

• Add/subtract exponents

• Multiply/divide significands (watch sign)

• Normalize

• Round

• All intermediate results should be in double

length storage

65

Floating Point Multiplication

66

Floating Point Division

