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Arithmetic for Computers
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Outline

• Arithmetic & Logic Unit

• Integer Representation
– Sign-Magnitude 

– Two’s Complement

– Integer Arithmetic
• Addition and Subtraction

• Multiplication

• Booth’s Algorithm

• Division

• Floating Point
– Floating Point Arithmetic

• Addition and Subtraction

• Multiplication and Division
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Arithmetic & Logic Unit

• Does the calculations

• Everything else in the 

computer is there to 

service this unit

• Handles integers

• May handle floating point (real) numbers

• May be separate FPU (maths co-processor)

• May be on chip separate FPU (486DX +)

Arithmetic & Logic Unit

• (Top) A 1-bit ALU that 
performs AND, OR, and 
addition on a and b or a' 
and b'

– includes a direct input that 
is connected to perform the 
set on less than operation

• (Bottom) a 1-bit ALU for 
the most significant bit. 

– has a direct output from the 
adder for the less than 
comparison called Set.
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Arithmetic & Logic Unit

• A 32-bit ALU 
constructed from the 31 
copies of the 1-bit ALU 
and one 1-bit ALU in the 
bottom of the figüre in 
previous slide. 

• The Less inputs are 
connected to 0 except for 
the least significant bit, 
which is connected to 
the Set output of the 
most significant bit.
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Arithmetic & Logic Unit

• The final 32-

bit ALU

with a Zero 

detector
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Arithmetic & Logic Unit

• The values of the three ALU control lines, Bnegate, and 

Operation, and the corresponding ALU operations

• The symbol commonly used to represent 

an ALU
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Integer Representation

• Only have 0 & 1 to represent everything

• Positive numbers stored in binary

– e.g. 41=00101001

• No minus sign

• No period

• Sign-Magnitude

• Two’s complement
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Sign-Magnitude

• Left most bit is 

sign bit

• 0 means positive

• 1 means negative

• +18 = 00010010

• -18 = 10010010

• Problems

– Need to consider both sign and magnitude in 

arithmetic

– Two representations of zero (+0 and -0)
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Two’s Complement

• +3 = 00000011

• +2 = 00000010

• +1 = 00000001

• +0 = 00000000

• -1 = 11111111

• -2 = 11111110

• -3 = 11111101
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Characteristics of Twos Complement Representation 

and Arithmetic
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Benefits

• One representation of zero

• Arithmetic works easily 

• Negating is fairly easy

3 = 00000011

Boolean complement gives 11111100

Add 1 to LSB 11111101
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Negation Special Case 1

• 0 =               00000000

• Bitwise not 11111111

• Add 1 to LSB  +1

• Result          1 00000000

• Overflow is ignored, so:

• - 0 = 0 
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Negation Special Case 2

• -128 = 10000000

• bitwise not 01111111

• Add 1 to LSB   +1

• Result 10000000

• So:

• -(-128) = -128   

• Monitor MSB (sign bit)

• It should change during negation
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Range of Numbers

• 8 bit 2s complement

– +127 = 01111111 = 27 -1

– -128 = 10000000 = -27

• 16 bit 2s complement

– +32767 = 011111111 11111111 = 215 - 1

– -32768 = 100000000 00000000 = -215

17

Conversion Between Lengths

• Positive number pack with leading zeros

• +18 =                00010010

• +18 = 00000000 00010010

• Negative numbers pack with leading ones

• -18 =                10010010

• -18 = 11111111 10010010

• i.e. pack with MSB (sign bit)
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Fixed-Point Representation

• Number representation discussed so far also 

referred as fixed point.

– Because the radix point (binary point) is fixed and 

assumed to be to the right of the rightmost digit 

(least significant digit).
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Integer Arithmetic

• Binary Addition

19

Carry in

Carry out
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Integer Arithmetic

• Negation:
– In sign magnitude

• simply invert the sign bit.

– In twos complement:
• apply twos complement operation

• Normal binary addition
– Monitor sign bit for overflow

• Subtraction
– Take twos complement of subtrahend and add to 

minuhend
• i.e. a - b = a + (-b)

• So we only need addition and complement circuits
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Addition and Subtraction

• Overflow rule

– If two numbers are added and they are both 

positive or both negative, then overflow occurs if 

and only if the result has the opposite sign
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Addition of Numbers in Twos Complement Representation
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Subtraction of Numbers in 2s Complement Representation (M – S)
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Hardware for Addition and Subtraction
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Multiplication

• Complex

• Work out partial product for each digit

• Take care with place value (column)

• Add partial products

• Example:

1011   Multiplicand (11 dec)

x 1101 Multiplier     (13 dec)

1011   Partial products

0000

1011

1011

10001111   Product (143 dec)

• Note: need double length result

Unsigned Binary Multiplication

• Flowchart
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Unsigned Binary Multiplication

• Block diagram of ALU circuitry 
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Execution of Example
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Signed Binary Multiplication

• This does not work!

• Solution 1

– Convert to positive if required

– Multiply as above

– If signs were different, negate answer

• Solution 2

– Booth’s algorithm

Signed Binary Multiplication

• Booth’s Multiplier

30
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Signed Binary Multiplication

• Flowchart of 

Booth’s

Multiplier

31 32

Example of Booth’s Algorithm
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Division of Unsigned Binary Integers

• More complex than multiplication

– Negative numbers are really bad!

• Based on long division

Unsigned Binary Division

• Flowchart
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Unsigned Binary Division

• Example using 

division of the 

unsigned integer 7 

by the unsigned 

integer 3
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Unsigned Binary Division

• Schematic diagram of ALU circuitry

36
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Signed Binary Division

• With signed division, we negate the quotient if 

the signs of the divisor and dividend disagree. 

• The remainder and the divident must have the 

same signs. 

• The governing equation is as follows:

Remainder = Divident - (Quotient · Divisor) ,

– and the following four cases apply:
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Signed Binary Division

• Flowchart
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Signed Binary Division

• Example using division of +7 by the integer +3 

and -3
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Signed Binary Division

• Example using division of -7 by the integer +3 

and -3
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Division in MIPS

• MIPS supports multiplication and division using existing hardware, 
primarily the ALU and shifter. 

– MIPS needs one extra hardware component –
• a 64-bit register able to support sll and sra instructions. 

• The upper (high) 32 bits of the register contains the remainder resulting 
from division. 

– This is moved into a register in the MIPS register stack (e.g., $t0) by the mfhi
command. 

• The lower 32 bits of the 64-bit register contains the quotient resulting from 
division. 

– This is moved into a register in the MIPS register stack by the mflo command.

• In MIPS assembly language code, signed division is supported by the div
instruction and unsigned division, by the divu instruction. 

• MIPS hardware does not check for division by zero. 
– Thus, divide-by-zero exception must be detected and handled in system 

software. 

• A similar comment holds for overflow or underflow resulting from division.
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Division in MIPS

• MIPS ALU that supports integer arithmetic operations (+,-,x,/)

42
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Real Numbers

• Numbers with fractions

• Could be done in pure binary

– 1001.1010 = 24 + 20 +2-1 + 2-3 =9.625

• Where is the binary point?

• Fixed?

– Very limited

• Moving?

– How do you show where it is?
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Real Numbers (exponantials)

• 123 000 000 000 000  

1.23 X 1014

• 0.0000000000000123  

1.23 X 10-14
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Floating Point

• +/- .significand x 2exponent

• Point is actually fixed between sign bit and body of 

mantissa

• Exponent indicates place value (point position)
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Floating Point Examples
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Signs for Floating Point

• Mantissa is stored in 2s complement

• Exponent is in excess or biased notation

– e.g. Excess (bias) 128 means

– 8 bit exponent field

– Pure value range 0-255

– Subtract 128 to get correct value

– Range -128 to +127

48

Normalization

• FP numbers are usually normalized

• i.e. exponent is adjusted so that leading bit 

(MSB) of mantissa is 1

• Since it is always 1 there is no need to store it

• (c.f. Scientific notation where numbers are 

normalized to give a single digit before the 

decimal point

• e.g. 3.123 x 103)
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FP Ranges

• For a 32 bit number

– 8 bit exponent 

– +/- 2256  1.5 x 1077

• Accuracy

– The effect of changing lsb of mantissa

– 23 bit mantissa 2-23  1.2 x 10-7

– About 6 decimal places

Expressible Numbers

• 2s complement integer (32 bits)

• Floating point

50
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IEEE 754

• Standard for floating point storage

• 32 bit standard (8 bit biased exponent)

– Single format

• 64 bit standard (11 bit biased exponent)

– Double format

FP example

• FPnumber = (-1)S · (1 + Significand) · 2(Exponent - Bias)

• Example:

52
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IEEE 754 Format Parameters
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Interpretation of IEEE 754 Floating-Point Numbers
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Floating-Point Numbers and Arithmetic Operations
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A floating-point operation may produce one of these conditions:

• Exponent overflow: 
– A positive exponent exceeds the maximum possible expo-nent

value. 
– In some systems, this may be designated as +∞ or -∞.

• Exponent underflow: 
– A negative exponent is less than the minimum possible exponent 

value (e.g., -200 is less than -127). 
– This means that the number is too small to be represented, and it 

may be reported as 0.

• Significand underflow: 
– In the process of aligning significands, digits may flow off the 

right end of the significand.
– Some form of rounding is required.

• Significand overflow: 
– The addition of two significands of the same sign may result in a 

carry out of the most significant bit. 
– This can be fixed by realignment.
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FP Arithmetic +/-

• Check for zeros

• Align significands (adjusting exponents)

• Add or subtract significands

• Normalize result
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FP Arithmetic +/- Phase 1

• Zero check

– Because addition and subtraction are identical

except for a sign change, the process begins by

changing the sign of the subtrahend if it is a 

subtract operation. 

– Next, if either operand is 0, the other is reported as 

the result.
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FP Arithmetic +/- Phase 2

• Significand alignment

– Numbers needs to be manipulated so that the two exponents

are equal.

• To see the need for aligning exponents, consider the

following decimal addition:
• (123 x 100) + (456 x 10-2)

– Clearly, we cannot just add the significands. 

• The digits must first be set into equivalent positions, 

– that is, the 4 of the second number must be aligned with the 3 of the first. 

– Under these conditions, the two exponents will be 

equal,which is the mathematical condition under which two

numbers in this form can be added. Thus,
• (123 x 100) + (456 x 10-2) = (123 x 100) + (4.56 x 100) = 127.56x100
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FP Arithmetic +/- Phase 2

• Alignment may be achieved by shifting either the
smaller number to the right (increasing its exponent) or
shifting the larger number to the left. 
• Because either operation may result in the loss of digits, it is 

the smaller number that is shifted; any digits that are lost are
therefore of relatively small significance. 

• The alignment is achieved by repeatedly shifting the
magnitude portion of the significand right 1 digit and
incrementing the exponent until the two exponents are
equal. 
• Note that if the implied base is 16, a shift of 1 digit is a shift of 

4 bits. 
• If this process results in a 0 value for the significand, then the other

number is reported as the result. 

• Thus, if two numbers have exponents that differ significantly, 
the lesser number is lost.
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FP Arithmetic +/- Phase 3

• Addition

– The two significands are added together, taking

into account their signs. 

• Because the signs may differ, the result may be 0. 

– There is also the possibility of significand overflow

by 1 digit. 

– If so, the significand of the result is shifted right

and the exponent is incremented. 

– An exponent overflow could occur as a result; 

• this would be reported and the operation halted.
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FP Arithmetic +/- Phase 4

• Normalization

– Normalization consists of shifting significand digits

left until the most significant digit (bit, or 4 bits for

base-16 exponent) is nonzero. 

– Each shift causes a decrement of the exponent and

thus could cause an exponent underflow. 

– Finally, the result must be rounded off and then

reported. 
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FP Addition & Subtraction Flowchart
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FP Arithmetic x/

• Check for zero

• Add/subtract exponents 

• Multiply/divide significands (watch sign)

• Normalize

• Round

• All intermediate results should be in double 

length storage
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Floating Point Multiplication

66

Floating Point Division


