Computer Architecture
Prof. Dr. Nizamettin AYDIN
naydin@yildiz.edu.tr nizamettinaydin@gmail.com
http://www.yildiz.edu.tr/~naydin

Arithmetic for Computers

Outline

- Arithmetic \& Logic Unit
- Integer Representation
- Sign-Magnitude
- Two's Complement
- Integer Arithmetic
- Addition and Subtraction
- Multiplication
- Booth's Algorithm
- Division
- Floating Point
- Floating Point Arithmetic
- Addition and Subtraction
- Multiplication and Division

Arithmetic \& Logic Unit

- The values of the three ALU control lines, Bnegate, and Operation, and the corresponding ALU operations

- The symbol commonly used to represent an ALU

Integer Representation

- Only have $0 \& 1$ to represent everything
- Positive numbers stored in binary
- e.g. 41=00101001
- No minus sign
- No period
- Sign-Magnitude
- Two's complement

Sign-Magnitude

$A=\left\{\begin{array}{lll}\sum_{i=0}^{n-2} 2^{i} a_{i} & \text { if } a_{n-1}=0 & \text { - Left most bit is } \\ \text { sign bit } \\ -\sum_{i=0}^{n-2} 2^{i} a_{i} & \text { if } a_{n-1}=0 & \text { • } 0 \text { means positive }\end{array}\right.$

- 1 means negative
- $+18=00010010$
- $-18=10010010$
- Problems
- Need to consider both sign and magnitude in arithmetic
- Two representations of zero (+0 and -0)

Two's Complement

$-2^{n-1} a_{n-1}+\sum_{i=0}^{n-2} 2^{i} a_{i}$

- $+3=00000011$
- $+2=00000010$
- $+1=00000001$
- $+0=00000000$
- $-1=11111111$
- $-2=11111110$
- $-3=11111101$

Characteristics of Twos Complement Representation and Arithmetic

Range	$\quad-2^{n-1}$ through $2^{n-1}-1$
Number of Representations of Zero	Take the Boolean complement of each bit of the corresponding positive number, then add 1 to the resulting bit pattern viewed as an unsigned integer.
Negation	Add additional bit positions to the left and fill in with the value of the original sign bit.
Expansion of Bit Length	
Overflow Rule	If two numbers with the same sign (both positive or both negative) are added, then overflow occurs if and only if the result has the opposite sign.
Subtraction Rule	To subtract B from A, take the twos complement of B and add it to A.

Benefits

- One representation of zero
- Arithmetic works easily
- Negating is fairly easy
$3=$

Negation Special Case 1

- $0=00000000$
- Bitwise not 11111111
- Add 1 to LSB $+1$
- Result 100000000
- Overflow is ignored, so:
- $-0=0 \sqrt{ }$

Negation Special Case 2

- $-128=$

10000000

- bitwise not 01111111
- Add 1 to LSB +1
- Result 10000000
- So:
- $-(-128)=-128$
- Monitor MSB (sign bit)
- It should change during negation

Conversion Between Lengths

- Positive number pack with leading zeros

Fixed-Point Representation

- Number representation discussed so far also referred as fixed point.
- $+18=00010010$
- Because the radix point (binary point) is fixed and assumed to be to the right of the rightmost digit (least significant digit).

Integer Arithmetic

- Negation:
- In sign magnitude
- simply invert the sign bit.
- In twos complement:
- apply twos complement operation
- Normal binary addition
- Monitor sign bit for overflow
- Subtraction
- Take twos complement of subtrahend and add to minuhend
- i.e. $a-b=a+(-b)$
- So we only need addition and complement circuits

Addition and Subtraction

- Overflow rule
- If two numbers are added and they are both positive or both negative, then overflow occurs if and only if the result has the opposite sign

Operation	Operand \mathbf{A}	Operand \mathbf{B}	Result indicating overflow
$A+B$	≥ 0	≥ 0	<0
$A+B$	<0	<0	≥ 0
$A-B$	≥ 0	<0	<0
$A-B$	<0	≥ 0	≥ 0

Addition of Numbers in Twos Complement Representation
$\left.\begin{array}{|r|r|}\hline 1001=-7 \\ +\frac{0101}{1110}=-5 \\ \text { (a) }(-7)+(+5)\end{array} \quad \begin{array}{rl}1100=-4 \\ +0100 & = \\ 10000 & = \\ \text { (b) }(-4)+(+4)\end{array}\right)$

Hardware for Addition and Subtraction

$\mathrm{OF}=$ overflow bit
$\mathrm{SW}=$ Swich (sele
SW $=$ Swich (select addition or subbraction)

Multiplication

- Complex
- Work out partial product for each digit
- Take care with place value (column)
- Add partial products
- Example:

1011 Multiplicand (11 dec)
$\times 1101$ Multiplier (13 dec)
1011 Partial products
0000
1011
1011
$\overline{10001111}$ Product (143 dec)

- Note: need double length result

Unsigned Binary Multiplication

Execution of Example

\(\left.$$
\begin{array}{ccccll}\text { C } & \text { A } & \text { Q } & \text { M } \\
0 & 0000 & 1101 & 1011 & \text { Initial Values } \\
0 & 1011 & 1101 & 1011 & \text { Add } \\
0 & 0101 & 1110 & 1011 & \left.\begin{array}{l}\text { First } \\
\text { Shift }\end{array}\right\} \begin{array}{l}\text { Fycle } \\
\text { cy } \\
0\end{array}
$$ \& 0010

1111 \& 1011 \& Shift\end{array}\right\}\)| Second |
| :--- |
| Cycle |

Signed Binary Multiplication

- This does not work!
- Solution 1
- Convert to positive if required
- Multiply as above
- If signs were different, negate answer
- Solution 2
- Booth's algorithm

Signed Binary Multiplication

- Booth's Multiplier

Signed Binary Multiplication

- Flowchart of Booth's Multiplier

Division of Unsigned Binary Integers

- More complex than multiplication
- Negative numbers are really bad!
- Based on long division

Unsigned Binary Division

Unsigned Binary Division				
- Example using division of the unsigned integer 7 by the unsigned integer 3	A	Q	$\mathrm{M}=0011$	
	0000 0000		Initial values Shift	
	1101		$\mathrm{A}=\mathrm{A}-\mathrm{M}$	1
	0000	1110	$\mathrm{A}=\mathrm{A}+\mathrm{M}$	
	0001 1110	1100	$\left.\begin{array}{l}\text { Shift } \\ \mathrm{A}=\mathrm{A}-\mathrm{m} \\ \text { den }\end{array}\right\}$	2
	0001	1100	$\mathrm{A}=\mathrm{A}+\mathrm{M}$	
	0011 0000 0000		$\left.\begin{array}{l}\text { Shift } \\ \left.\begin{array}{l}\mathrm{A}=\mathrm{A}-\mathrm{M} \\ \mathrm{Q}_{0}=1\end{array}\right\}\end{array}\right\}$	3
	$\begin{aligned} & 0001 \\ & 1110 \\ & 0001 \end{aligned}$		$\left.\begin{array}{l} \text { Shift } \\ A=A-M \\ A=A+M \end{array}\right\} 4$	4

Example of Booth's Algorithm

Unsigned Binary Division

- Flowchart

Unsigned Binary Division

- Schematic diagram of ALU circuitry

Signed Binary Division

- With signed division, we negate the quotient if the signs of the divisor and dividend disagree.
- The remainder and the divident must have the same signs.
- The governing equation is as follows:

Remainder $=$ Divident $-($ Quotient \cdot Divisor $)$, - and the following four cases apply:
$(+7) /(+3): \mathrm{Q}=2 ; \mathrm{R}=1$
$(-7) /(+3): \quad \mathrm{Q}=-2 ; \mathrm{R}=-1$
$(+7) /(-3): \mathrm{Q}=-2 ; \mathrm{R}=1$
$(-7) /(-3): \quad \mathrm{Q}=2 ; \mathrm{R}=-1$

Signed Binary Division

- Flowchart

Signed Binary Division

- Example using division of +7 by the integer +3 and -3

MIPS supports multiplication and division using existing hardware, primarily the ALU and shifter.

MIPS needs one extra hardware component

- The upper (high) 32 bits of the register contains the remainder resulting from division.

This is moved into a register in the MIPS register stack (e.g., \$t0) by the mfhi

- The lower 32 bits of the 64 -bit register contains the quotient resulting from division

This is moved into a register in the MIPS register stack by the mflo command

- In MIPS assembly language code, signed division is supported by the div instruction and unsigned division, by the divu instruction.
MIPS hardware does not check for division by zero.
Thus, divide-by-zero exception must be detected and handled in system
- A similar comment holds for overflow or underflow resulting from division

Division in MIPS

Signed Binary Division

- Example using division of -7 by the integer +3 and -3

Division in MIPS

- MIPS ALU that supports integer arithmetic operations (+,-,x,/)

Real Numbers

- Numbers with fractions
- Could be done in pure binary
$-1001.1010=2^{4}+2^{0}+2^{-1}+2^{-3}=9.625$
- Where is the binary point?
- Fixed?
- Very limited
- Moving?
- How do you show where it is?

Real Numbers (exponantials)

- 123000000000000
1.23×10^{14}
- 0.0000000000000123
1.23×10^{-14}
${ }_{43}$

Floating Point Examples
sign of
significand

$1.1010001 \times 2^{10100}=01001001110100010000000000000000=1.638125 \times 2^{20}$ $-1.1010001 \times 2^{10100}=11001001110100010000000000000000=-1.638125 \times 2^{2}$ $-1.1010001 \times 2^{210100}=001101011101000100000000000000000=-1.638125 \times 2^{2}=1.638125 \times 2^{-2}$ $-1.1010001 \times 2^{-10100}=10110101110100010000000000000000=-1.638125 \times 2^{-2}$
(b) Examples

Signs for Floating Point

- Mantissa is stored in 2 s complement
- Exponent is in excess or biased notation
- e.g. Excess (bias) 128 means
- 8 bit exponent field
- Pure value range 0-255
- Subtract 128 to get correct value
- Range -128 to +127

Normalization

- FP numbers are usually normalized
- i.e. exponent is adjusted so that leading bit (MSB) of mantissa is 1
- Since it is always 1 there is no need to store it
- (c.f. Scientific notation where numbers are normalized to give a single digit before the decimal point
- e.g. 3.123×10^{3})

FP Ranges

- For a 32 bit number
-8 bit exponent
$-+/-2^{256} \approx 1.5 \times 10^{77}$
- Accuracy
- The effect of changing lsb of mantissa
-23 bit mantissa $2^{-23} \approx 1.2 \times 10^{-7}$
- About 6 decimal places

Expressible Numbers

- 2 s complement integer (32 bits)

- Floating point

FP example

- FPnumber $=(-1) \mathrm{S} \cdot(1+$ Significand $) \cdot 2^{\text {(Exponent }- \text { Bias })}$
- Example:

0	01101000	10101010100001101000010

- Sign: $0 \Rightarrow$ posifive
- Exponent:

- Bias adjastment: $104-12=-22$
Significand:
$-1+1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}+0 \times 2^{-4}+1 \times 2^{-5}+\ldots$
$=1+2^{-1}+2^{-3}+2^{-5}+2^{-7}+2^{-9}+2^{-14}+2^{-15}+2^{-17}+2^{-22}$
$=1.0+0.666115$
- Represents: $1.666115^{*} 2^{-23} \sim 1.986^{*} 10^{-7}$

Parameter	75	rmat	ram	
	Format			
	Single	Single Extended	Double	Double Extended
Word width (bits)	32	≥ 43	64	≥ 79
Exponent width (bits)	8	≥ 11	11	≥ 15
Exponent bias	127	unspecified	1023	unspecified
Maximum exponent	127	≥ 1023	1023	≥ 16383
Minimum exponent	-126	s-1022	-1022	<-16382
Number range (base 10)	$10^{-38} \cdot 10^{+38}$	unspecified	$10^{-308} \cdot 10^{+308}$	unspecified
Significand width (bits)*	23	≥ 31	52	≥ 63
Number of exponents	254	unspecified	2046	unspecified
Number of fractions	2^{23}	unspecified	22^{52}	unspecified
Number of values	1.98×2^{31}	unspecified	$1.99 \times 2{ }^{63}$	unspecified
* not including implied bit				

Interpretation of IEEE 754 Floating-Point Numbers

	Single Frecision (32 bits)				Double Precision (64 bits)			
	Sign	$\begin{gathered} \text { Biased } \\ \text { exponert } \end{gathered}$	Fraction	Value	Sign	Biased exponent	Fraction	Value
positive zero	0	,	0	0	0	,	0	0
nezative zerio	1	0	0	-0	1	0	0	-0
plus infinity	0	255 (all 1s)	0	∞	0	2047 (all 15)	0	∞
minus infinity	1	255 (all 15)	0	-	1	2047 (all 15)	0	- -
quier Nav	$00{ }^{1}$	255 (all 15)	* 0	NaN	0001	2047 (all 15)	\# 0	NaN
sienaling NaN	0 or 1	255 (all 18)	$\neq 0$	NaN	0 or 1	2047 (all 1s)	$\neq 0$	NaN
positive normalized nonzero	0	$0<e<255$	f	$2^{2-127}(1.0)$	0	$0<e<2047$	f	$2^{-1033}(1$ f)
negative normalized nomzero	1	$0<e<255$	f	$-2^{2-127}(1.15$	1	$0<e<2047$	f	$-2^{2-1023}(1.1$.
positive denormalized	0	0	$\mathrm{f} \neq 0$	$2^{8-126}(0 . f)$	0	0	$\mathrm{f} \neq 0$	$2^{2-1023}(0 . \mathrm{f})$
$\begin{aligned} & \text { megative } \\ & \text { denomalized } \\ & \hline \end{aligned}$	1	0	$\mathrm{f} \neq 0$	$-2^{-12}(0101$	1	0	$\mathrm{f} \neq 0$	$-2^{2-1022}(0.1)$

Floating-Point Numbers and Arithmetic Operations

Examples:
$X=0.3 \times 10^{2}=30$
$Y=0.2 \times 10^{3}=200$
$X+Y=\left(0.3 \times 10^{2-3}+0.2\right) \times 10^{3}=0.23 \times 10^{3}=230$
$X-Y=\left(0.3 \times 10^{-3}-0.2\right) \times 10^{3}=(-0.17) \times 10^{3}=-170$
$X \times Y=(0.3 \times 0.2) \times 10^{2+3}=0.06 \times 10^{5}=6000$
$X \times Y=(0.3 \times 0.2) \times 10^{-,-2}=0.06 \times 10^{5}=6000$
$X+Y=(0.3+0.2) \times 10^{2-3}=1.5 \times 10^{-1}=0.15$

A floating-point operation may produce one of these conditions:

- Exponent overflow:
- A positive exponent exceeds the maximum possible expo-nent value
In some systems, this may be designated as $+\infty$ or $-\infty$.
- Exponent underflow:

A negative exponent is less than the minimum possible exponent value (e.g., -200 is less than -127).
This means that the number is too small to be represented, and it may be reported as 0 .

- Significand underflow:
- In the process of aligning significands, digits may flow off the right end of the significand.
Some form of rounding is required.
- Significand overflow:

The addition of two significands of the same sign may result in a
carry out of the most significant bit

- This can be fixed by realignment.

FP Arithmetic +/-

- Check for zeros
- Align significands (adjusting exponents)
- Add or subtract significands
- Normalize result

FP Arithmetic +/-

Phase 1

- Zero check
- Because addition and subtraction are identical except for a sign change, the process begins by changing the sign of the subtrahend if it is a subtract operation.
- Next, if either operand is 0 , the other is reported as the result.

FP Arithmetic +/-
 Phase 2

- Significand alignment
- Numbers needs to be manipulated so that the two exponents are equal.
- To see the need for aligning exponents, consider the following decimal addition:
- $\left(123 \times 10^{0}\right)+\left(456 \times 10^{-2}\right)$
- Clearly, we cannot just add the significands.
- The digits must first be set into equivalent positions, - that is, the 4 of the second number must be aligned with the 3 of the first.
- Under these conditions, the two exponents will be equal, which is the mathematical condition under which two numbers in this form can be added. Thus,
- $\left(123 \times 10^{0}\right)+\left(456 \times 10^{-2}\right)=\left(123 \times 10^{0}\right)+\left(4.56 \times 10^{0}\right)=127.56 \times 10^{0}$

FP Arithmetic +/-

Phase 2

- Alignment may be achieved by shifting either the smaller number to the right (increasing its exponent) or shifting the larger number to the left.
- Because either operation may result in the loss of digits, it is the smaller number that is shifted; any digits that are lost are therefore of relatively small significance.
- The alignment is achieved by repeatedly shifting the magnitude portion of the significand right 1 digit and incrementing the exponent until the two exponents are equal.
- Note that if the implied base is 16 , a shift of 1 digit is a shift of 4 bits.

If this process results in a 0 value for the significand, then the other number is reported as the result.

- Thus, if two numbers have exponents that differ significantly, the lesser number is lost.

FP Arithmetic +/-

Phase 3

- Addition
- The two significands are added together, taking into account their signs.
- Because the signs may differ, the result may be 0 .
- There is also the possibility of significand overflow by 1 digit.
- If so, the significand of the result is shifted right and the exponent is incremented.
- An exponent overflow could occur as a result; - this would be reported and the operation halted.

FP Arithmetic +/-
 Phase 4

- Normalization
- Normalization consists of shifting significand digits left until the most significant digit (bit, or 4 bits for base-16 exponent) is nonzero.
- Each shift causes a decrement of the exponent and thus could cause an exponent underflow.
- Finally, the result must be rounded off and then reported.

FP Addition \& Subtraction Flowchart

FP Arithmetic \mathbf{x} / \div

- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize
- Round
- All intermediate results should be in double length storage

