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Immediate Addressing

• The operand is a constant within the instruction 

itself

• Example

add $s1, $s2, 200  $s1= $s2 + 200

4

Register Addressing

• The operand is in a register

• Example

add $s1, $s2, $s3  $s1= $s2 + $s3
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Base Addressing

• The operand is in the memory location whose 

address is the sum of a register and a constant 

in the instruction

• Example

lw $s1, 200($s2)  $s1= mem[200 + $s2]
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PC-relative Addressing

• The address is the sum of the PC and a 

constant in the instruction

– I-Type instruction

• Example

beq $s1, $s2 , 200  if ($s1 ==$s2) PC= PC+4+200*4
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Pseudodirect Addressing

• the jump address is the 26 bits of the instruction 

concatenated with the upper bits of the PC

– J-Type instruction

• Example

j 4000  PC = (PC[31:28], 4000*4) 
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MIPS Instruction Formats - Summary
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Uniformity and Compiler Friendliness in MIPS

• 3 instruction formats: I, R and J
– R-type: 

• Register-register arithmetic

– I-type: 
• immediate arithmetic, load/stores, conditional branches

– J-type: 
• Jumps, non-conditional branches

– Opcodes are always in the same place

– rs and rt are always in the same place, as is rd if it exists

– The immediate is always in the same place

• Similar amounts of work per instruction
– 1 read from instruction memory

– <=1 arithmetic operations

– <=2 register reads

– <=1 register write

– <= 1 data load/store

• Fixed instruction length
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Other ISAs

• CISC (Complex Instruction Set Computing)
– Combine memory and computation operations into a 

single operation

– Multiple-step operations

– Examples: System/360, Motorola 68k, x86, VAX

– Dominant in desktops and servers

• RISC (Reduced Instruction Set Computing)
– a.k.a load/store architecture (memory accesses are not 

part of an arithmetic instruction)
• Arithmetic instructions just operate on registers

– Examples: MIPS, ARM, PowerPC, SPARC

– Dominant in cell phones, embedded systems
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ARM and MIPS Instruction Encoding
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x86 Instruction Encoding

• Variable length 
encoding

– Postfix bytes 
specify
addressing mode

– Prefix bytes 
modify operation

• Operand length, 
repetition,
locking, …

• Intel and AMD 
use x86
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Concluding Remarks on ISA

• Design principles for a good ISA

– Simplicity favors regularity

– Smaller is faster

– Make the common case fast

– Good design demands good compromises

• Layers of software/hardware

– Compiler, assembler, linker, hardware

• MIPS: typical of RISC ISAs

• x86 typical of CISC ISAs
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C Code Translation Hierarchy
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gcc –S src.c

gcc –c src.s or gcc –c src.c

gcc src.o or gcc src.c

specifiy output filename with -o

./a.out

Compiler Flags - Example

• gcc –S src.c #creates .s file
– Generates assembly code (compile only)

• gcc –c src.s #creates .o file
– Generates object file (compile and assemble)

• gcc src.o #creates a.out file
– Generates an executable from object files

• gcc sum.o -o sum.exe #creates an executable
sum.exe
– Generates an executable with a specified output name

• gcc src.c #creates an executable by default name 
a.out
– Compile, assemble and link
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Assembly Language

• Assembly language is the symbolic representation of a 
computer’s binary encoding, which is called machine 
language.

• Assembly language is more readable than machine language 
because it uses symbols instead of bits.

• Assembly language permits programmers to use labels to 
identify and name particular memory words that hold 
instructions or data.

• A tool called assembler translates assembly language into 
binary instructions.

• An assembler reads a single assembly language source file 
and produces object file containing machine instructions and 
bookkeeping information that helps combine several object 
files into a program.
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Object File

• Not directly executable

• Contains object code (relocatable format machine code)

• Input to the linker

• Provides information for building a complete program
from the pieces
– Header: described contents of object module

– Text segment: translated instructions

– Static data segment: data allocated for the life of the 
program

– Relocation info: for contents that depend on absolute 
location of loaded program

– Symbol table: global definitions and external refs

– Debug info: for associating with source code
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Linking Object Files

• Link editor or linker links the object files

• Linker takes all the independently assembled object files 
and stitches them together
– Resolves all the undefined labels into an executable file

• Relocation
– Linker merges object files 

and assigns runtime 
addresses to each symbol
and section

• As a result, 
instructions and data 
will have unique 
runtime addresses

• Output is an 
executable file
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Executable

• Its format is similar to an object file

– But contains almost no unresolved references

• It can contain symbol tables and debugging

information and partially linked files, such as 

library routines, that still have unresolved 

addresses.

– Might need to do another relocation at the 

execution time

• Loader executes the executable
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Loading a Program

• A loader is the part of an operating system

• Load from image file (executable) on disk into memory

– Read header to determine size of the text and data segments

– Create an address space for the segments

– Copy text and data from the executable file into memory

– Set up arguments (if any) on stack

– Initialize registers (including $sp, $fp, $gp)

– Jump to startup routine

• Copies arguments to $a0, … and calls ”main”

– Note that loader is the caller and ”main” is the callee

• When main returns, program exits
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Dynamic Linking

• Static linking is fast
– The application can be certain that all its libraries are 

present with static libraries

– Static linking will result in a significant performance
improvement

– Static linking can also allow the application to be 
contained in a single executable file, simplifying 
distribution and installation.

• Dynamically link/load library when it is called
– Requires procedure code to be relocatable

– Avoids large image files caused by static linking of all
(transitively) referenced libraries

– Automatically picks up new library versions
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What time?

• Compile Time

• Link Time

• Load Time

• Runtime (Execution Time)

• The source of the error and error messages 

differ.
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Java Code Translation Hierarchy
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Portable instruction 

set for the JVM

Interprets bytecodes

at runtime

Compiles bytecodes of

“hot” methods into native 

code for host machine


