
Copyright 2000 N. AYDIN. All rights

reserved. 1

Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

1

MIPS Address Modes and

Translating Programs

2

3

Outline

• MIPS Adressing Modes
– Immediate Addressing

– Register Addressing

– Base Addressing

– PC-relative Addressing

– Pseudodirect Addressing

– MIPS Instruc-on Formats – Summary

– Other ISAs

• Translating Programs
– C Code Translation Hierarchy

– Compiler Flags - Example

– Assembly Language

– Object File

– Executable

– Loading a Program

– Dynamic Linking

– Java Code Transla-on Hierarchy

Immediate Addressing

• The operand is a constant within the instruction

itself

• Example

add $s1, $s2, 200 $s1= $s2 + 200

4

Register Addressing

• The operand is in a register

• Example

add $s1, $s2, $s3 $s1= $s2 + $s3

5

Base Addressing

• The operand is in the memory location whose

address is the sum of a register and a constant

in the instruction

• Example

lw $s1, 200($s2) $s1= mem[200 + $s2]

6

mailto:naydin@yildiz.edu.tr
mailto:nizamettinaydin@gmail.com

Copyright 2000 N. AYDIN. All rights

reserved. 2

PC-relative Addressing

• The address is the sum of the PC and a

constant in the instruction

– I-Type instruction

• Example

beq $s1, $s2 , 200 if ($s1 ==$s2) PC= PC+4+200*4

7

Pseudodirect Addressing

• the jump address is the 26 bits of the instruction

concatenated with the upper bits of the PC

– J-Type instruction

• Example

j 4000 PC = (PC[31:28], 4000*4)

8

MIPS Instruction Formats - Summary

9

Uniformity and Compiler Friendliness in MIPS

• 3 instruction formats: I, R and J
– R-type:

• Register-register arithmetic

– I-type:
• immediate arithmetic, load/stores, conditional branches

– J-type:
• Jumps, non-conditional branches

– Opcodes are always in the same place

– rs and rt are always in the same place, as is rd if it exists

– The immediate is always in the same place

• Similar amounts of work per instruction
– 1 read from instruction memory

– <=1 arithmetic operations

– <=2 register reads

– <=1 register write

– <= 1 data load/store

• Fixed instruction length

10

Other ISAs

• CISC (Complex Instruction Set Computing)
– Combine memory and computation operations into a

single operation

– Multiple-step operations

– Examples: System/360, Motorola 68k, x86, VAX

– Dominant in desktops and servers

• RISC (Reduced Instruction Set Computing)
– a.k.a load/store architecture (memory accesses are not

part of an arithmetic instruction)
• Arithmetic instructions just operate on registers

– Examples: MIPS, ARM, PowerPC, SPARC

– Dominant in cell phones, embedded systems

11

ARM and MIPS Instruction Encoding

12

Copyright 2000 N. AYDIN. All rights

reserved. 3

x86 Instruction Encoding

• Variable length
encoding

– Postfix bytes
specify
addressing mode

– Prefix bytes
modify operation

• Operand length,
repetition,
locking, …

• Intel and AMD
use x86

13

Concluding Remarks on ISA

• Design principles for a good ISA

– Simplicity favors regularity

– Smaller is faster

– Make the common case fast

– Good design demands good compromises

• Layers of software/hardware

– Compiler, assembler, linker, hardware

• MIPS: typical of RISC ISAs

• x86 typical of CISC ISAs

14

C Code Translation Hierarchy

15

gcc –S src.c

gcc –c src.s or gcc –c src.c

gcc src.o or gcc src.c

specifiy output filename with -o

./a.out

Compiler Flags - Example

• gcc –S src.c #creates .s file
– Generates assembly code (compile only)

• gcc –c src.s #creates .o file
– Generates object file (compile and assemble)

• gcc src.o #creates a.out file
– Generates an executable from object files

• gcc sum.o -o sum.exe #creates an executable
sum.exe
– Generates an executable with a specified output name

• gcc src.c #creates an executable by default name
a.out
– Compile, assemble and link

16

Assembly Language

• Assembly language is the symbolic representation of a
computer’s binary encoding, which is called machine
language.

• Assembly language is more readable than machine language
because it uses symbols instead of bits.

• Assembly language permits programmers to use labels to
identify and name particular memory words that hold
instructions or data.

• A tool called assembler translates assembly language into
binary instructions.

• An assembler reads a single assembly language source file
and produces object file containing machine instructions and
bookkeeping information that helps combine several object
files into a program.

17

Object File

• Not directly executable

• Contains object code (relocatable format machine code)

• Input to the linker

• Provides information for building a complete program
from the pieces
– Header: described contents of object module

– Text segment: translated instructions

– Static data segment: data allocated for the life of the
program

– Relocation info: for contents that depend on absolute
location of loaded program

– Symbol table: global definitions and external refs

– Debug info: for associating with source code

18

Copyright 2000 N. AYDIN. All rights

reserved. 4

Linking Object Files

• Link editor or linker links the object files

• Linker takes all the independently assembled object files
and stitches them together
– Resolves all the undefined labels into an executable file

• Relocation
– Linker merges object files

and assigns runtime
addresses to each symbol
and section

• As a result,
instructions and data
will have unique
runtime addresses

• Output is an
executable file

19

Executable

• Its format is similar to an object file

– But contains almost no unresolved references

• It can contain symbol tables and debugging

information and partially linked files, such as

library routines, that still have unresolved

addresses.

– Might need to do another relocation at the

execution time

• Loader executes the executable

20

Loading a Program

• A loader is the part of an operating system

• Load from image file (executable) on disk into memory

– Read header to determine size of the text and data segments

– Create an address space for the segments

– Copy text and data from the executable file into memory

– Set up arguments (if any) on stack

– Initialize registers (including $sp, $fp, $gp)

– Jump to startup routine

• Copies arguments to $a0, … and calls ”main”

– Note that loader is the caller and ”main” is the callee

• When main returns, program exits

21

Dynamic Linking

• Static linking is fast
– The application can be certain that all its libraries are

present with static libraries

– Static linking will result in a significant performance
improvement

– Static linking can also allow the application to be
contained in a single executable file, simplifying
distribution and installation.

• Dynamically link/load library when it is called
– Requires procedure code to be relocatable

– Avoids large image files caused by static linking of all
(transitively) referenced libraries

– Automatically picks up new library versions

22

What time?

• Compile Time

• Link Time

• Load Time

• Runtime (Execution Time)

• The source of the error and error messages

differ.

23

Java Code Translation Hierarchy

24

Portable instruction

set for the JVM

Interprets bytecodes

at runtime

Compiles bytecodes of

“hot” methods into native

code for host machine

