
Copyright 2000 N. AYDIN. All rights

reserved. 1

Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

1

MIPS Instruction Set-II

2

3

Outline

• MIPS Instruction Set-II
– Control Flow Instructions

• Control Flow

• Specifying Branch Destinations

• Compiling If-Else Statements

– Unconditonal Jump

– Branch Instruction Design

– For Loop

– Procedure Call
• Procedure Call Instructions

– MIPS Register Usage Convention

– Temporary and Saved Registers

– Stack allocation in MIPS

– Storage Classes

– Memory Layout

Control Flow Instructions

• What are control flow statements in a

programming language?

– Loops:

• Do, For, While

– If then else

– Case and Switch Statements

– Function Calls

– Goto, Labels (not recommended)

– Return Statement

4

Control Flow

• The kinds of control flow statements supported by
different languages vary, but can be categorized by their
effect:
– continuation at a different statement

• unconditional branch or jump,

– executing a set of statements only if some condition is met
• choice - i.e., conditional branch,

– executing a set of statements zero or more times, until some
condition is met

• i.e., loop - the same as conditional branch,

– executing a set of distant statements, after which the flow of
control usually returns

• subroutines or functions,

– stopping the program, preventing any further execution
• unconditional halt.

5

MIPS Control Flow Instructions

• MIPS conditional branch instructions (I format):

bne $s0, $s1, Lbl #go to Lbl if $s0≠$s1

beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

• Branch to a labeled instruction if a condition is
met

– Otherwise, continue sequentially

• Example: if (i==j) h = i + j;

bne $s0, $s1, Lbl1

add $s3, $s0, $s1

Lbl1: ...

6

mailto:naydin@yildiz.edu.tr
mailto:nizamettinaydin@gmail.com

Copyright 2000 N. AYDIN. All rights

reserved. 2

Specifying Branch Destinations

bne $s0, $s1, Lbl

• How is the branch destination address specified?

• Use a register (like in lw and sw) added to the 16-bit
offset
– which register? Instruction Address Register (the PC)

• its use is automatically implied by instruction

• PC gets updated (PC+4) during the fetch cycle so that it holds the
address of the next instruction

• PC gets updated to (PC + 4 + offset) if the branch is taken

– limits the branch distance to -215 to +215-1 (word)
instructions from the (instruction after the) branch
instruction, but most branches are local anyway

7

Specifying Branch Destinations

8

Compiling If-Else Statements

• C code:

if (i==j) f = g+h;

else f = g-h;

– f, g, h, i, j are in $s0, $s1, …

• Compiled MIPS code:

bne $s3, $s4, Else

add $s0, $s1, $s2

j Exit

Else: sub $s0, $s1, $s2

Exit: …

9

unconditional jump to
instruction labeled Exit

Assembler calculates addresses

Unconditonal Jump (J Format)

• MIPS also has an unconditional branch

instruction or jump instruction:

j label #go to label

10

Branching Far Away

• What if the branch destination is further away
than can be captured in 16 bits?

• The assembler comes to the rescue
– it inserts an unconditional jump to the branch target

and inverts the condition

beq $s0, $s1, L1

becomes
bne $s0, $s1, L2

j L1

L2: …

11

Branch Instruction Design

• Why not blt, bge, etc?

• Hardware for <, ≥, … slower than =, ≠

– Combining with branch involves more work per

instruction, requiring a slower clock

– All instructions are penalized!

• beq and bne are the common case

– Use in combination with beq, bne with slt

• This is a good design compromise

12

Copyright 2000 N. AYDIN. All rights

reserved. 3

Set on Less Than (slt)

• Use in combination with beq, bne with slt

slt $t0, $s1, $s2 # if ($s1 < $s2)

bne $t0, $zero, L # branch to L

• Set result to 1 if a condition is true

– Otherwise, set to 0

• slt rd, rs, rt

– if (rs < rt) rd = 1; else rd = 0;

• slti rt, rs, constant

– if (rs < constant) rt = 1; else rt = 0;

13

For Loop

for (j = 0; j < 10; j++)

a = a + j;

#assume s0 == j; s1 == a; t0 == temp;

Instructions Comments

addi $s0, $zero, 0 #j = 0 + 0

addi $t0, $zero, 10 #temp = 0 + 10

Loop: beq $s0, $t0, Exit #if (j == temp)goto Exit

add $s1, $s1, $s0 #a = a + j

addi $s0, $s0, 1 #j = j + 1

j Loop #goto Loop

Exit: … #exit from loop & cont.

14

This is not correct since the
loop bound is not j!=10 but j< 10

For Loop

for (j = 0; j < 10; j++)

a = a + j;

#assume s0 == j; s1 == a; t0 == temp;

Instructions Comments

addi $s0, $zero, 0 #j = 0 + 0

addi $t0, $zero, 10 #temp = 0 + 10

Loop: slt $t0, $s0, $t1 #if (j < n)

beq $t0, $zero, Exit

add $s1, $s1, $s0 #a = a + j

addi $s0, $s0, 1 #j = j + 1

j Loop #goto Loop

Exit: … #exit from loop & cont.

15

Procedure Call

• Procedure P calls procedure Q, and Q then executes and
returns back to P
– Passing Control:

• The PC must be set to the starting address of the code for Q upon
entry and then set to the instruction in P following the call to Q
upon return

– Passing Data:
• P must be able to provide one or more parameters to Q and Q must

be able to return a value back to P

– Allocating and Deallocating memory:
• Q may need to allocate space for local variables when it begins and

then free that storage before it returns.

16

Procedure Call

• The execution of a procedure

– Place parameters in a place where the procedure

can access

– Transfer control to the procedure

– Acquire the storage resources needed for the

procedure

– Perform the desired task

– Place the result value in a place where the calling

program can access

– Return control to the point of origin

17

Procedure Call Instructions

• Procedure call:

– jump and link

jal ProcedureLabel

• Address of following instructon put in $ra

• Jumps to target address

• Procedure return: jump register

jr $ra

• Copies $ra to program counter

18

Copyright 2000 N. AYDIN. All rights

reserved. 4

MIPS Register Usage Convention

• $a0-$a3 :
– four argument registers in which to pass parameters

• $v0-$v1:
– two value registers in which to return values

• $ra:
– one return address register to return to the point of origin

• At the end of the procedure we jump back to the $ra (an
unconditional jump)

jr $ra #jump register

• The jump-and-link instruction (jal) :
– jumps to an address and simultaneously saves the address of

the following instruction (PC + 4) in register $ra

jal ProcedureAddress

19

MIPS Register Conventions

20

Spilling Registers

• What if the callee needs more than 4 arguments?

• What happens to the content of the register file?

– callee uses a sotware stack
• a last-in-first-out queue

– Stack is kept in memory

– One of the general registers, $sp ($29),
is used to address the stack

• which “grows” from high address to low address

• add data onto the stack – push

$sp = $sp – 4

– data on stack at new $sp

• remove data from the stack – pop

$sp = $sp + 4

– data from stack at $sp

21

Temporary and Saved Registers

• Temporary registers $t0 through $t9 can also
be used as by MIPS convention they are not
preserved by the callee across subroutine
boundaries

– i.e., if the caller must first save it if it concerns that
it may lose its content

• However, saved registers $s0 through $s7 must
be preserved by the callee

– i.e., if the callee uses one, it must first save it and
then restore it to its old value before returning
control to the caller

22

Allocating Space on the Stack

• The segment of the stack containing a

procedure’s saved registers and local variables

in its procedure frame (a.k.a. activation record)

• The frame pointer ($fp)

points to the first word of the

frame of a procedure

– providing a stable base register

for the procedure

• $fp is initialized using $sp on a call and

$sp is restored using $fp on a return

23

Stack allocation in MIPS

24

Copyright 2000 N. AYDIN. All rights

reserved. 5

Storage Classes

• Storage classes

– Variables that are local to a procedure and are

discarded when the procedure exits

– Variables that exist across procedures are kept in

static memory.

• To simplify access to static data MIPS uses

global pointer ($gp)

25

Memory Layout

• Text
– program code

• Static data
– global variables
• – e.g., static variables in C, constant

arrays and strings

• $gp initialized to address allowing
±offsets into this segment

• Stack:
– automatic storage

• Dynamic data segment (a.k.a. heap)
– for structures that grow and shrink (e.g., linked lists)

• Allocate space on the heap with malloc() and free it with free() in C

26

Leaf Procedure Example

• C code:

int leaf_example (int g,int h,int i,int j)

{

int f;

f = (g + h) - (i + j);

return f;

}

– Arguments g, …, j in $a0, …, $a3

– f in $s0 (hence, need to save $s0 on stack)

– Result in $v0

27

Leaf Procedure

• MIPS code:

leaf_example:

addi $sp, $sp, -4

sw $s0, 0($sp) Save $s0 on stack

add $t0, $a0, $a1

add $t1, $a2, $a3 Procedure body

sub $s0, $t0, $t1

add $v0, $s0, $zero Result on the return value

lw $s0, 0($sp) Restore stack

addi $sp, $sp, 4

jr $ra Return

28

Non-Leaf Procedures

• Procedures that call other procedures

• For nested calls, need to save the data on the

stack:

– Return address of the procedure

– Any arguments and temporaries needed after the

call

• Restore from the stack after the call

• Recursive functions are optimized to prevent

stack overflow.

29

Non-Leaf Procedures

30

Each function (callee) has a
return link to the caller

Copyright 2000 N. AYDIN. All rights

reserved. 6

Non-Leaf Procedure Example - Recursion

• C code:

int fact (int n)

{

if (n < 1)

return 1;

else

return n * fact(n - 1);

}

– Argument n in $a0

– Result in $v0

31

Non-Leaf Procedure Example - Recursion

• MIPS code:

•

fact:

addi $sp, $sp, -8 # adjust stack for 2 items

sw $ra, 4($sp) # save the return address

sw $a0, 0($sp) # save the argument n

slti $t0, $a0, 1 # test for n<1

beq $t0, $zero, Else # if n>=1, goto Else

addi $v0, $zero, 1 # return 1

addi $sp, $sp, 8 # pop 2 items off stack

jr $ra # return to after jal

Else:

addi $a0, $a0, -1 # n>=1: argument gets (n-1)

jal fact # call fact with (n-1)

lw $a0, 0($sp) # return from jal: restore argument n

lw $ra, 4($sp) # restore the return address

addi $sp, $sp, 8 # adjust stack pointer to pop 2 items

mul $v0, $a0, $v0 # return n*fact(n-1)

jr $ra

32

Procedure Calls in MIPS (Summary)

• The caller passes arguments to the callee by placing the
values into the argument registers $a0-$a3.

• The caller calls jal followed by the label of the subroutine.
– This saves the return address in $ra.

• The return address is PC + 4, where PC is the address of the jal
instruction

• The callee starts by pushing any registers it needs to save on
the stack.

• If the callee calls a another subroutine, then it must push $ra
on the stack.
– It may need to push temporary registers as well.

– Once the subroutine is complete, the return value is place in $v0-
$v1.

• The callee then calls jr $ra to return back to the caller.

33

