Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr
nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

MIPS Instruction Set-I1

Outline

* MIPS Instruction Set-11
Control Flow Instructions
« Control Flow
« Specifying Branch Destinations
« Compiling If-Else Statements
Unconditonal Jump
Branch Instruction Design
For Loop
Procedure Call
« Procedure Call Instructions
— MIPS Register Usage Convention
— Temporary and Saved Registers
— Stack allocation in MIPS
Storage Classes
Memory Layout

Control Flow Instructions

« What are control flow statements in a
programming language?
— Loops:
« Do, For, While
— If then else
— Case and Switch Statements
— Function Calls
— Goto, Labels (not recommended)
— Return Statement

Control Flow

» The kinds of control flow statements supported by
different languages vary, but can be categorized by their
effect:

continuation at a different statement
« unconditional branch or jump,
— executing a set of statements only if some condition is met
« choice - i.e., conditional branch,
executing a set of statements zero or more times, until some
condition is met
« i.e., loop - the same as conditional branch,
— executing a set of distant statements, after which the flow of
control usually returns
« subroutines or functions,
stopping the program, preventing any further execution
« unconditional halt.

MIPS Control Flow Instructions

» MIPS conditional branch instructions (I format):
bne $s0, $s1, Lbl #goto Lbl if $s0£$s1
beq $s0, $s1, Lbl #goto Lbl if $s0=$s1

« Branch to a labeled instruction if a condition is
met

— Otherwise, continue sequentially
» Example: if(i==j))h=i+]j;

bne $s0, $s1, Lbll
add $s3, $sO0, Psl
Lbll: ..

Copyright 2000 N. AYDIN. All rights
reserved.

mailto:naydin@yildiz.edu.tr
mailto:nizamettinaydin@gmail.com

Specifying Branch Destinations

bne $s0, $s1, Lbl

0x05 | 16 | 17 16 bit offset

» How is the branch destination address specified?

» Use a register (like in lw and sw) added to the 16-bit
offset
— which register? Instruction Address Register (the PC)
« its use is automatically implied by instruction

address of the next instruction
« PC gets updated to (PC + 4 + offset) if the branch is taken
— limits the branch distance to -2%° to +215-1 (word)
instructions from the (instruction after the) branch
instruction, but most branches are local anyway

« PC gets updated (PC+4) during the fetch cycle so that it holds the

Specifying Branch Destinations

from the low order 16 bits of the branch instruction

Sign bit %’15

branch destination
address

Compiling If-Else Statements

f=g+h

—f,0,h,i,jarein $s0, $s1, ...
| Exit:

» Compiled MIPS code:
bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit
Else: sub $s0, $s1, $s2

unconditional jump to
nstruction labeled Exit

« C code: tue false
if(i==j) f=g+h; g
else f=g-h;

Exit: ... T Assembler calculates addresse

Else:

f=g-h

Unconditonal Jump (J Format)

« MIPS also has an unconditional branch
instruction or jump instruction:
j label #go to label
0x02 | 26-bit Address

from the low order 26 bits of the jump instruction

Branching Far Away

» What if the branch destination is further away
than can be captured in 16 bits?

« The assembler comes to the rescue

— it inserts an unconditional jump to the branch target
and inverts the condition

beq $s0, $s1, L1
becomes
bne $s0, $s1, L2
i L1
L2:

Branch Instruction Design

« Why not blt, bge, etc?
» Hardware for <, >, ... slower than =, #

— Combining with branch involves more work per
instruction, requiring a slower clock

— All instructions are penalized!
* beq and bne are the common case
Use in combination with beq, bne with slt
« This is a good design compromise

Copyright 2000 N. AYDIN. All rights
reserved.

Set on Less Than (slt)

st $t0, $s1, $s2 #if ($s1 < $s2)
bne $t0, $zero, L # branch to L
« Set result to 1 if a condition is true
— Otherwise, setto 0
e sltrd, rs, rt
—if(rs<rt)rd=1;else rd =0;
« sltirt, rs, constant
— if (rs < constant) rt = 1; else rt = 0;

» Use in combination with beq, bne with slt

For Loop

for (j=0;j<10; j++)

: 1= 1
aza+j loop bound is not j=10 but j< 10

This is not correct since the

#assume s0 == j; s1 == a; t0 == temp;

Instructions Comments
addi $s0, $zero, O #=0+0
addi $t0, $zero, 10 #temp =0+ 10
Loop: beq $s0, $t0, Exit #if (j == temp)goto Exit
add $s1, $sl, $sO #Ha=a+]
addi $s0, $s0, 1 #i=j+1
j Loop #goto Loop
Exit: ... #exit from loop & cont.

For Loop

for (j=0;]<10;j++)
a=a+j;

#assume s0 == j; s1 == a; t0 == temp;

Instructions Comments

addi $s0, $zero, 0 #=0+0

addi $t0, $zero, 10 #temp =0+ 10
Loop: slt $t0, $s0, St #if (j<n)

beq $t0, $zero, Exit

add $s1, $s1, $sO #a=a+tj

addi $s0, $s0, 1 #=j+1

j Loop #goto Loop

Exit: ... #exit from loop & cont.

Procedure Call

char myfunction(int number)

char s;

int num = 5;
char selection[] =

s M T T sy
return selectionlnunber] :

s=myfunction (num);

« Procedure P calls procedure Q, and Q then executes and
returns back to P
— Passing Control:

« The PC must be set to the starting address of the code for Q upon
entry and then set to the instruction in P following the call to Q
upon return

— Passing Data:

« P must be able to provide one or more parameters to Q and Q must
be able to return a value back to P

— Allocating and Deallocating memory:

« Q may need to allocate space for local variables when it begins and
then free that storage before it returns.

Procedure Call

» The execution of a procedure

can access
Transfer control to the procedure

Acquire the storage resources needed for the
procedure

Perform the desired task

program can access
Return control to the point of origin

Place parameters in a place where the procedure

Place the result value in a place where the calling

Procedure Call Instructions

* Procedure call:
jump and link
jal ProcedureLabel
« Address of following instructon put in $ra
 Jumps to target address
« Procedure return: jump register
jr $ra
« Copies $ra to program counter

Copyright 2000 N. AYDIN. All rights
reserved.

MIPS Register Usage Convention

+ $a0-$a3:
— four argument registers in which to pass parameters
o $v0-$vi:
— two value registers in which to return values
* Sra:
— one return address register to return to the point of origin
« At the end of the procedure we jump back to the $ra (an
unconditional jump)
jr $ra #jump register
» The jump-and-link instruction (jal) :
— jumps to an address and simultaneously saves the address of
the following instruction (PC + 4) in register $ra
jal ProcedureAddress

MIPS Register Conventions

RO -$zem Constant 0 R16 | o1l
3 sat Reserved for R17 [50
T | assembler Callee saved
Rzl s Return Values =2 temporaries
R3[| s rio | may not be
overwritien by

R4 $a0 R20 $s54 called

fol st argumens i procedures

Re | $a2 h r22| 4

R7 $a3 R23 $s7

R8 $t0 R24 §t8 Caller save

B s R25 [T temp
R10 [T Caller saved R26 Reserved for

temporaries operating system
R11 [may be R27
R12 [overwritten by R28 Global pointer
called —)

R13 $t5 procedures R29 Stack pointer
R14 $t6 R30 Callee save temp
R15 $t7 R31 Retumn address

Spilling Registers

» What if the callee needs more than 4 arguments?
» What happens to the content of the register file?

— callee uses a sotware stack
« a last-in-first-out queue

— Stack is kept in memory
hagh adgx One of the general registers, $sp ($29),
is used to address the stack
[Sop of stack M-ssp * Which “grows” from high address to low address
« add data onto the stack — push

$sp=$sp—4
— data on stack at new $sp
+ remove data from the stack — pop

$sp=$sp +4
Low addr — data from stack at $sp

Temporary and Saved Registers

« Temporary registers $t0 through $t9 can also
be used as by MIPS convention they are not
preserved by the callee across subroutine
boundaries
— i.e., if the caller must first save it if it concerns that

it may lose its content

« However, saved registers $s0 through $s7 must
be preserved by the callee
— i.e., if the callee uses one, it must first save it and

then restore it to its old value before returning
control to the caller

Allocating Space on the Stack

+ The segment of the stack containing a
procedure’s saved registers and local variables
in its procedure frame (a.k.a. activation record)

« The frame pointer ($fp)

S o= points to the first word of the

S frame of a procedure

—providing a stable base register
for the procedure

P« $fp is initialized using $sp on a call and
pow sad $sp is restored using $fp on a return

Stack allocation in MIPS

High
address
Sfp sfp
Ssp st Ssp
—| Saved argument
register (if any)
Saved return address|
Saved saved
register (if any)
Local arrays and
. structures (if any)
Low address
Before procedure call During procedure call After procedure call

Copyright 2000 N. AYDIN. All rights
reserved.

Storage Classes

« Storage classes

— Variables that are local to a procedure and are
discarded when the procedure exits

— Variables that exist across procedures are kept in
static memory.
» To simplify access to static data MIPS uses
global pointer ($gp)

Memory Layout

» Text
— program code
« Static data

..... — global variables

e.g., static variables in C, constant
arrays and strings

OxTFFifffC

0x 1000 0000 « $gp initialized to address allowing
+offsets into this segment
+ Stack:
PC =-{ Ox 0040 0000 .
[Resemved {0000 0000 — automatic sto rage

» Dynamic data segment (a.k.a. heap)
— for structures that grow and shrink (e.g., linked lists)
« Allocate space on the heap with malloc() and free it with free() in C

Leaf Procedure Example

« Ccode:
int leaf_example (int g,int h,int i,int j)
{
int f;
f=(g+h)-(+j)
return f;
}

— Arguments g, ..., j in $a0, ..., $a3
— fin $s0 (hence, need to save $s0 on stack)
Result in $v0

Leaf Procedure

int leaf_example (int g,int h,int i,int 33

int

» MIPS code:

leaf_example:] ey 3 7
addi $sp, $sp, -4
sw $s0, 0($sp)
add $t0, $a0, $al
add $t1, $a2, $a3 Procedure body
sub $s0, $t0, $tl
add $v0, $s0, $zero Result on the return value
lw $s0, O($sp) Restore stack
addi $sp, $sp, 4
jr $ra Return

Save $s0 on stack

Non-Leaf Procedures

« Procedures that call other procedures
 For nested calls, need to save the data on the
stack:
Return address of the procedure

— Any arguments and temporaries needed after the
call

« Restore from the stack after the call

« Recursive functions are optimized to prevent
stack overflow.

Non-Leaf Procedures

"z N-3 4
l RETURN LINKTO 43
e N-2 1 o >
l’ T Each function (callee) has a
e N-1 | s return link to the caller
[ermmrem 10
15
14
acTivE 13
FRAME N 12
1
LI
® e pOITER
AVAILABLE
STACK K

SPACE

Copyright 2000 N. AYDIN. All rights
reserved.

Non-Leaf Procedure Example - Recursion

» C code:
int fact (int n)
{
if(n<1)
return 1;
else
return n * fact(n - 1);

}

— Argument n in $a0
— Result in $v0

Non-Leaf Procedure Example - Recursion

+ MIPS code:
. Falgem -0+
return f;
fact:
addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save the return address
sw $a0, 0($sp) # save the argument n
slti $t0, $a0, 1 #test for n<1
beq $t0, $zero, Else #if n>=1, goto Else
addi $v0, $zero, 1 #return 1
addi $sp, $sp, 8 # pop 2 items off stack
ir $ra # return to after jal
Else:
addi $a0, $a0, -1 #n>=1: argument gets (n-1)
jal fact # call fact with (n-1)
Iw $a0, 0($sp) # return from jal: restore argument n
Iw $ra, 4($sp) # restore the return address
addi $sp, $sp, 8 # adjust stack pointer to pop 2 items
mul $v0, $a0, $v0 # return n*fact(n-1)
ir $ra

Procedure Calls in MIPS (Summary)

The caller passes arguments to the callee by placing the
values into the argument registers $a0-$a3.

The caller calls jal followed by the label of the subroutine.
— This saves the return address in $ra.

« The return address is PC + 4, where PC is the address of the jal
instruction

The callee starts by pushing any registers it needs to save on

the stack.

« If the callee calls a another subroutine, then it must push $ra

on the stack.

— It may need to push temporary registers as well.

- gnlce the subroutine is complete, the return value is place in $vO-
V1.

The callee then calls jr $ra to return back to the caller.

Copyright 2000 N. AYDIN. All rights
reserved.

