
Copyright 2000 N. AYDIN. All rights

reserved. 1

Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

1

MIPS Instruction Set-I

2

3

Outline

• MIPS Instruction Set

– Overview

– MIPS operands

• Register operands

• Memory operands

• Immediate operands

– MIPS instruction formats

– MIPS operations

• Aritmetic operations

• Logical operations

– Hexadecimal notation

Instructions: Overview

• Language of the machine

• More primitive than higher level languages,
– e.g., no sophisticated control flow such as while or for

loops

• Very restrictive
– e.g., MIPS arithmetic instructions

• MIPS instruction set architecture
– inspired most architectures developed since the 80's

• used by NEC, Nintendo, Silicon Graphics, Sony

– Design goals
• maximize performance and minimize cost and reduce design

time

4

MIPS operands

• Register operands

• Memory operands

• Immediate operands

5

MIPS operands

• Register Operands

– Arithmetic instructions use register operands

• MIPS has a 32 × 32-bit register file

– Assembler names of registers

• $t0, $t1, …, $t9 for temporary values

• $s0, $s1, …, $s7 for saved variables

• Example

– C code: A = B + C

– MIPS code: add $s0, $s1, $s2

6

mailto:naydin@yildiz.edu.tr
mailto:nizamettinaydin@gmail.com

Copyright 2000 N. AYDIN. All rights

reserved. 2

MIPS operands

• Memory Operands

– Processor can only keep small amount of data in registers

– Main memory used for composite data
• Arrays, structures, dynamic data

– MIPS has two basic data transfer instructions for accessing
memory

• Load values from memory into registers

• Store result from register to memory

– Memory is byte addressed
• Each address identifies an 8-bit byte

– In MIPS, arithmetic operations work only on registers
• Compiler issues load/store instructions to get the operands to place

them in registers

7

MIPS operands

• Memory Operand example 1:

– C code:

g = h + A[8];

• g in $s1, h in $s2, address of A in $s3

– Compiled MIPS code:

• Index 8 requires offset of 32

– 4 bytes per word

lw $t0, 32($s3) # load word

add $s1, $s2, $t0

8

offset base register

MIPS operands

• Load Instruction illustrated

9

MIPS operands

• Memory Operand example 2:

– C code:

A[12] = h + A[8];

• h in $s2, base address of A in $s3

– Compiled MIPS code:

• Index 8 requires offset of 32

lw $t0, 32($s3) # load word

add $t0, $s2, $t0

sw $t0, 48($s3) # store word

10

MIPS operands

• Store Instruction illustrated:

11

MIPS operands

• Register vs Memory
– Registers are faster to access than memory

• Access to registers takes 1 cycle, whereas to memory takes
100s of cycles

– Operating on memory data requires loads and stores
• More instructions to be executed

– Compiler must use registers for variables as much as
possible

• Only spill to memory for less frequently used variables

• Register optimization is important!

– Registers are faster than main memory
• But register files with more locations are slower

– (e.g. a 64 Word file could be as 50% slower than a 32 word file)

12

Copyright 2000 N. AYDIN. All rights

reserved. 3

MIPS operands

• Immediate Operands
– Constant data specified in an instruction

addi $s3, $s3, 4

– No subtract immediate instruction
• Just use a negative constant

addi $s2, $s1, -1

• Constant Zero
– MIPS register 0 ($zero) is the constant 0

• Cannot be overwritten

– Useful for common operations
• e.g., move between registers

add $t2, $s1, $zero

13

Question

• In the MIPS code below
lw $v1, 0($a0)

addi $v0, $v0, 1

sw $v1, 0($a1)

addi $a0, $a0, 1

1. How many times is instruction memory accessed?

2. How many times is data memory accessed?

• (Count only accesses to memory, not registers.)

3. How many times is register file accessed?

4. Which ones are read, which ones are write to the
register file?

14

Question- Solution

1. 4 times instruction memory
– Because every instruction needs to be fetched (read)

from memory

2. 2 times data memory
– One for lw (read), one for sw (write)

3. 8 times register file is accessed

4.
lw $v1, 0($a0) a0 is read, v1 is written into

addi $v0, $v0, 1 v0 is read, v0 is written into

sw $v1, 0($a1) a1 is read and v1 is read

addi $a0, $a0, 1 a0 is read, a0 is written into

15

Representing Instructions

• MIPS-32 instructions

– Encoded as 32-bit instruction words

– Very Regular and Very Simple!

• 3 Instruction Formats

– all 32 bits wide

16

MIPS R-format Instructions

• Instruction fields
– op: operation code (opcode)

– rs: first source register number

– rt: second source register number

– rd: destination register number

– shamt: shift amount (00000 for now)

– funct: function code (extends opcode)

• How many different types of R-format instructions can there
be?

17

R-format example 1

18

Copyright 2000 N. AYDIN. All rights

reserved. 4

R-format example 2

• shamt: how many positions to shift

• Shift left logical

– Shift left and fill with 0 bits

– sll by i bits multiplies by 2i

• Shift right logical

– Shift right and fill with 0 bits

– srl by i bits divides by 2i (unsigned only)

19

MIPS Register Convention

– Temporaries and saved value registers are programmable.

– The rest of the registers have a special meaning.

20

MIPS I-format Instructions

• Immediate arithmetic and load/store

instructions

– rt: destination or source register number

– Constant: –215 to +215 – 1

– Address: offset added to base address in rs

– Different formats complicate decoding

– Keep formats as similar as possible

21

Load/Store Instruction (I format)

22

Question

• What is the corresponding C statement for the following
MIPS assembly instructions?

sll $t0, $s0, 2

add $t0, $s6, $t0

sll $t1, $s1, 2

add $t1, $s7, $t1

lw $s0, 0($t0)

addi $t2, $t0, 4

lw $t0, 0($t2)

add $t0, $t0, $s0

sw $t0, 0($t1)

• Assume f, g, h, i and j are assigned to $s0, $s1, $s2, $s3, and $s4

• Base addresses of arrays A and B are in registers $s6 and $s7

23

Question- Solution

sll $t0, $s0, 2 //$t0 = f *4

add $t0, $s6, $t0 //$t0 = &A[f]

sll $t1, $s1, 2 //$t1 = g * 4

add $t1, $s7, $t1 //$t1 = &B[g]

lw $s0, 0($t0) //f = A[f]

addi$t2, $t0, 4 //$t2 = &A[f + 1] //f is still of the original value

lw $t0, 0($t2) //$t0 = A[f + 1]

add $t0, $t0, $s0 //$t0 = A[f + 1] + A[f]

sw $t0, 0($t1) //B[g] = A[f + 1] + A[f]

• Overall

B[g] = A[f+1] + A[f]

f = A[f]
– g, i, j are not changed.

– The two statements cannot swap order!

24

Copyright 2000 N. AYDIN. All rights

reserved. 5

Byte Addresses

• Since 8-bit bytes are so useful, most architectures
address individual bytes in memory
– Most significant byte of a word is leftmost

– Least significant byte of a word is rightmost

• Big Endian
– leftmost byte is word address
• IBM 360/370, Motorola 68k, MIPS, Sparc,

HP PA

• Little Endian
– rightmost byte is word address
• Intel 80x86, DEC Vax, DEC Alpha

(Windows NT)

25

Endianness

• Big-endian representation is the most common
convention in data networking;

– fields in the protocols of the internet protocol are
transmitted in big-endian order.

• Little-endian storage is popular for
microprocessors in part due to significant
historical influence on microprocessor designs
by Intel

• Little-endian dominates but do not assume all
use little-endian.

26

Instruction Alignment

• Alignment restriction

– the memory address of a word must be on natural

word boundaries

• a multiple of 4 in MIPS-32

27

Immediate Instruction (I format)

• Small constants are used often in typical code

• Possible approaches?
– put typical constants in memory and load them

– create hard-wired registers (like $zero) for constants like 0

– have special instructions that contain constants

addi $sp, $sp, 4 #$sp = $sp + 4

slti $t0, $s2, 15 #$t0 = 1 if $s2<15

• The constant is kept inside the instruction itself!
– Immediate format limits values to the range +215–1 to -215

28

2s-Complement Signed Integers

• Given an n-bit number

• Range

–2n–1 to +2n–1 – 1

• Example

• (1111 1111 1111 1111 1111 1111 1111 1100)2

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644

= (–4)10

29

Signed Negation

• Complement and add 1

– Complement means 1 → 0, 0 → 1

• Question: negate +2

+2 = (0000 0000 … 0010)2

–2 = (1111 1111 … 1101)2 + 1

= (1111 1111 … 1110)2

30

Copyright 2000 N. AYDIN. All rights

reserved. 6

Sign Extension

• Representing a number using more bits
– Preserve the numeric value

• In MIPS instruction set
– addi: extend immediate value

– lb, lh: extend loaded byte/halfword

– beq, bne: extend the displacement

• Replicate the sign bit to the left
– unsigned values: extend with 0s

– Signed values: extend the sign bit

• Question: Extend +2 and -2 from 8-bit to 16-bit
+2: 0000 0010 => 0000 0000 0000 0010

–2: 1111 1110 => 1111 1111 1111 1110

31

MIPS instruction formats summary

32

Instruction encoding example

33

MIPS operations

34

MIPS Arithmetic Operations

• MIPS assembly language notation

add a, b, c

• add the two variables b and c and put their sum in a

– each MIPS arithmetic instruction

• performs only one operation

• must always have exactly three variables

• Example, to place the sum of four variables b, c,
d, and e into variable a.

add a, b, c # The sum of b and c is placed in a

add a, a, d # The sum of b, c, and d is now in a

add a, a, e # The sum of b, c, d, and e is now in a

35

MIPS Arithmetic Operations

• Example:

– Compiling C Assignment Statements into MIPS

– C code : a = b + c

– MIPS code : add $s0, $s1, $s2

• compiler’s job is to associate variables with

registers

36

Copyright 2000 N. AYDIN. All rights

reserved. 7

MIPS Arithmetic Operations

• Example:

– Compiling C Assignment Statements into MIPS

C code : a = b + c

MIPS code : add $s0, $s1, $s2

– compiler’s job is to associate variables with registers

• Design Principle 1:

– simplicity favors regularity.

• Regular instructions make for simple hardware!

• Simpler hardware reduces design time and manufacturing

cost.

37

MIPS Arithmetic Operations

• Consider the following C code:

f = (g + h) - (i + j);

– The variables f, g, h, i, and j are assigned to the

registers $s0, $s1, $s2, $s3, and $s4, respectively.

• What is the compiled MIPS code?

• Compiled MIPS code:

add $t0, $s1, $s2 # register $t0 contains g + h

add $t1, $s3, $s4 # register $t1 contains i + j

sub $s0, $t0, $t1 # f gets $t0 – $t1

38

Logical Operations

• Instructions for bitwise manipulation

• Useful for extracting and inserting groups of

bits in a word

39

Logical Operations

• AND Operations

– Useful to mask bits in a word

• Select some bits, clear others to 0

and $t0, $t1, $t2

40

Logical Operations

• OR Operations

– Useful to include bits in a word

• Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

41

Logical Operations

• NOT Operations

– Useful to invert bits in a word

• Change 0 to 1, and 1 to 0

– MIPS has NOR 3-operand instruction

• a NOR b == NOT (a OR b)

nor $t0, $t1, $zero

42

Copyright 2000 N. AYDIN. All rights

reserved. 8

Hexadecimal

• Base 16

– Compact representation of bit strings

– 4 bits per hex digit

• Example: eca86420

1110 1100 1010 1000 0110 0100 0010 0000

43 44

