Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

MIPS ISA - I

Outline

- Overview of the MIPS architecture
 - ISA vs Microarchitecture?
 - CISC vs RISC
 - Basics of MIPS
 - Components of the MIPS architecture
 - Datapath and control unit
 - Memory
 - Memory addressing issue
 - Other components of the datapath
 - Control unit

MIPS Architecture

• MIPS

- An acronym for Microprocessor without Interlocking Pipeline Stages
- Not to be confused with a unit of computing speed equivalent to a *Million Instructions Per Second*
- · MIPS processor
 - born in the early 1980s from the work done by John Hennessy and his students at Stanford University
 exploring the architectural concept of RISC
 - Originally used in Unix workstations,
 - now mainly used in small devices
 - Play Station, routers, printers, robots, cameras

CISC vs RISC

- Advantages of CISC Architecture:
 - Microprogramming is easy to implement and much less expensive than hard wiring a control unit.
 - It is easy to add new commands into the chip without changing the structure of the instruction set as the architecture uses general-purpose hardware to carry out commands.
 - This architecture makes the efficient use of main memory since the complexity (or more capability) of instruction allows to use less number of instructions to achieve a given task.
 - The compiler need not be very complicated, as the microprogram instruction sets can be written to match the constructs of high level languages.

CISC vs RISC

- Disadvantages of CISC Architecture:
 - A new or succeeding versions of CISC processors consists early generation processors in their subsets.
 Therefore, chip hardware and instruction set became complex
 - with each generation of the processor.
 The overall performance of the machine is reduced due to the different amount of clock time required by different instructions.
 - This architecture necessitates on-chip hardware to be continuously reprogrammed.
 - The complexity of hardware and on-chip software included in CISC design to perform many functions.

CISC vs RISC

• Advantages of **RISC** Architecture:

 The performance of RISC processors is often two to four times than that of CISC processors because of simplified instruction set.

- This architecture uses less chip space due to reduced instruction set.
 - This makes to place extra functions like floating point arithmetic units or memory management units on the same chip.
- The per-chip cost is reduced by this architecture that uses smaller chips consisting of more components on a single silicon wafer.
- RISC processors can be designed more quickly than CISC processors due to its simple architecture.
- The execution of instructions in RISC processors is high due to the use of many registers for holding and passing the instructions as compared to CISC processors.

CISC vs RISC

- Disadvantages of **RISC** Architecture:
 - The performance of a RISC processor depends on the code that is being executed.
 - The processor spends much time waiting for first instruction result before it proceeds with next subsequent instruction, when a compiler makes a poor job of scheduling instruction execution.
 - RISC processors require very fast memory systems to feed various instructions.
 - Typically, a large memory cache is provided on the chip in most RISC based systems.

MIPS Basics • Instructions - 4 bytes (32 bits) - 4-byte aligned (i.e., they start at addresses that are a multiple of 4 --0x0000, 0x0004, etc.) Memory addresses and onemory thresse and onemory addresses and one addresses addres

Copyright 2000 N. AYDIN. All rights reserved.

Bytes and WordsAddressData • In modern ISAs memory is byte addressable Byte addresses Half Word Addresses Word addresses							
Address	Data		Address	Data		Address	Data
0x0000	0xAA	1	0x0000	0xAA15		0x0000	0xAA1513FF
0x0001	0x15	1	0x0002	0x13FF	1	0x0004	
0x0002	0x13	1	0x0004		1	0x0008	
0x0003	0xFF	1	0x0006		1	0x000C	
0x0004	0x76	1			1		
		1			1		
0xFFFE		1]		
0xFFFF		1	0xFFFC			0xFFFC	
• In MIPS, half words and words are aligned.							

Components of the MIPS architecture Major hardware components of the instruction cycle Datapath path of instructions and data through the processor components connected by buses [Bus- parallel path for transmitting values] [Bus- parallel path for transmitting values] [In MIPS, usually 32 bits wide] Control sthe components of the datapath determines how data moves through the datapath receives condition signals from the components

· switches between buses with multiplexers

Components of the MIPS architecture Major components of the datapath: program counter (PC) instruction register (IR)

- register file
- arithmetic and logic unit (ALU)
- memory
- Control unit

Components of the MIPS architecture

• Memory

- In MIPS, programs are separated from data in memory
- Text segment
 - instruction memory
 - part of memory that stores the program (machine code)
 - read only
- Data segment
 - data memory
 - part of memory that stores data manipulated by program
 - read/write

Memory Memory Image: All of the MIPS architecture Memory Image: All of the mining of the mi

- Harvard architecture (physically separate memories)

Copyright 2000 N. AYDIN. All rights reserved.

• Memory addressing in MIPS

- Memory address computed as base+offset for reading/writing the data segment
 - base is obtained from a register
 - offset is given directly as an integer
- Load word (read word from memory into register): lw \$t1, 8(\$t2) → \$t1 := Memory[\$t2+8]
- Store word (write word from register into memory):
 - sw \$t1, 4(\$t2) → Memory[\$t2+4] := \$t1

Components of the MIPS architecture

Copyright 2000 N. AYDIN. All rights reserved.

Components of the MIPS architecture

Control unit

- the faster the clock, the faster the program executes
 clock rate is limited by the slowest component!

