Computer Architecture

Prof. Dr. Nizamettin AYDIN

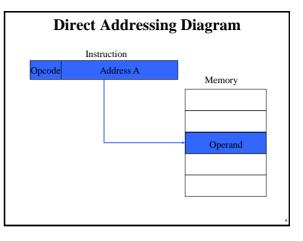
naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

Addressing Modes and Formats

Addressing Modes

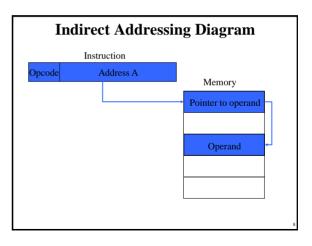
- Immediate
- Direct
- Indirect
- Register
- Register Indirect
- Displacement (Indexed)
- Stack


Immediate Addressing • Operand is part of instruction • Operand = address field • e.g. ADD 5 • Add 5 to contents of accumulator • Here 5 is operand • No memory reference to fetch data • Fast • Limited range Instruction

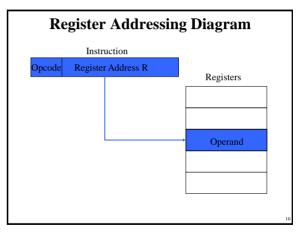
Direct Addressing

- · Address field contains address of operand
- Effective address (EA) = address field (A)
- e.g. ADD A

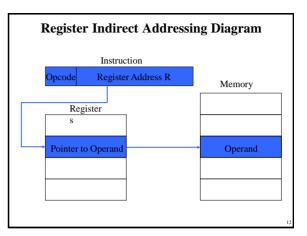
Add contents of cell A to accumulator
Look in memory at address A for operand


- Single memory reference to access data
- No additional calculations to work out effective address
- · Limited address space

Copyright 2000 N. AYDIN. All rights reserved.

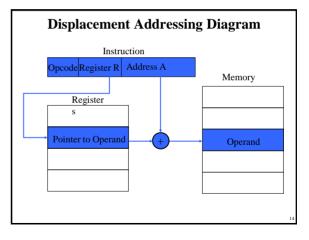

Indirect Addressing (1)

- Memory cell pointed to by address field contains the address of (pointer to) the operand
- · Large address space
- 2ⁿ where n = word length
- May be nested, multilevel, cascaded
- · Multiple memory accesses to find operand
- Hence slower



Register Addressing (1)

- · Operand is held in register named in address field
- $\mathbf{E}\mathbf{A} = \mathbf{R}$
- · Limited number of registers
- Very small address field needed
 Shorter instructions
 - Faster instruction fetch
- No memory access
- Very fast execution
- · Very limited address space
- Multiple registers helps performance
 Requires good assembly programming or compiler writing



Register Indirect Addressing Operand is held in memory cell pointed to by contents of register R named in address field EA = (R) Large address space (2ⁿ) One fewer memory access than indirect addressing

Displacement Addressing

- EA = A + (R)
- · Address field hold two values
 - -A = base value
 - -R = register that holds displacement
 - or vice versa

Relative Addressing

- · A version of displacement addressing
- R = Program counter (PC)
- EA = A + (PC)
- i.e. get operand from A cells from current location pointed to by PC

Base-Register Addressing

- A holds displacement
- R holds pointer to base address
- R may be explicit or implicit
- e.g. segment registers in 80x86

Indexed Addressing

- $\mathbf{A} = \mathbf{base}$
- \mathbf{R} = displacement
- $\mathbf{E}\mathbf{A} = \mathbf{A} + \mathbf{R}$
- Good for accessing arrays
 - -EA = A + R
 - R++

Combinations

- Postindex
- EA = (A) + (R)
- Preindex
- EA = (A+(R))

Stack Addressing

- Operand is (implicitly) on top of stack
- e.g.
 - ADD Pop top two items from stack and add

Summary of basic addressing modes

Mode	Algorithm	Principal Advantage	Principal Disadvantage
Immediate	Operand = A	No memory reference	Limited operand magnitude
Direct	EA = A	Simple	Limited address space
Indirect	EA = (A)	Large address space	Multiple memory references
Register	EA = R	No memory reference	Limited address space
Register indirect	EA = (R)	Large address space	Extra memory reference
Displacement	EA = A + (R)	Flexibility	Complexity
Stack	EA = top of stack	No memory reference	Limited applicability

Instruction Formats

- Layout of bits in an instruction
- Includes opcode
- Includes (implicit or explicit) operand(s)
- Usually more than one instruction format in an instruction set

Instruction Length

- Affected by and affects:
 - Memory size
 - Memory organization
 - Bus structure
 - CPU complexity
 - CPU speed
- Trade off between powerful instruction repertoire and saving space

Allocation of Bits

- Number of addressing modes
- Number of operands
- Register versus memory
- Number of register sets
- Address range
- Address granularity