
Copyright 2000 N. AYDIN. All rights

reserved. 1

Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

1 2

A virtual processor for

understanding instruction cycle

The Visible Virtual Machine (VVM)

3

• This is a general
depiction of a
von Neumann
system:

• These
computers
employ a fetch-
decode-execute
cycle to run
programs as
follows . . .

The von Neumann Model

4

• The control unit fetches the next instruction from
memory using the program counter to determine
where the instruction is located.

5

• The instruction is decoded into a language that the
ALU can understand.

6

• Any data operands required to execute the
instruction are fetched from memory and placed
into registers within the CPU.

mailto:naydin@yildiz.edu.tr

Copyright 2000 N. AYDIN. All rights

reserved. 2

7

• The ALU executes the instruction and places results
in registers or memory.

8

A virtual processor for understanding instruction cycle

9

The VVM Machine

• The Visible Virtual Machine (VVM) is based on a

model of a simple computer device called the Little

Man Computer which was originally developed by

Stuart Madnick in 1965, and revised in 1979.

• The VVM is a virtual machine because it only appears

to be a functioning hardware device.

• In reality, the VVM "hardware" is created through a

software simulation. One important simplifying

feature of this machine is that it works in decimal

rather than in the traditional binary number system.

• Also, the VVM works with only one form of data -

decimal integers.

10

Hardware Components of VVM

• I/O Log. This represents the system console which shows
the details of relevant events in the execution of the
program. Examples of events are the program begins, the
program aborts, or input or output is generated.

• Accumulator Register (Accum). This register holds the
values used in arithmetic and logical computations. It also
serves as a buffer between input/output and memory.
Legitimate values are any integer between -999 and +999.
Values outside of this range will cause a fatal VVM
Machine error. Non integer values are converted to
integers before being loaded into the register.

• Instruction Cycle Display. This shows the number of
instructions that have been executed since the current
program execution began.

11

Hardware Components of VVM

• Instruction Register (Instr. Reg.). This register holds the next
instruction to be executed. The register is divided into two parts: a
one-digit operation code, and a two digit operand. The Assembly
Language mnemonic code for the operation code is displayed below
the register.

• Program Counter Register (Prog. Ctr.). The two-digit integer value
in this register "points" to the next instruction to be fetched from
RAM. Most instructions increment this register during the execute
phase of the instruction cycle. Legitimate values range from 00 to 99.
A value beyond this range causes a fatal VVM Machine error.

• RAM. The 100 data-word Random Access Storage is shown as a
matrix of ten rows and ten columns. The two-digit memory addresses
increase sequentially across the rows and run from 00 to 99. Each
storage location can hold a three-digit integer value between -999 and
+999.

12

Data and Addresses

• All data and address values are maintained as

decimal integers.

• The 100 data-word memory is addresses with

two-digit addressed in the range 00-99.

• Each memory location holds one data-word

which is a decimal integer in the range -999 -

+999.

• Data values beyond this range cause a data

overflow condition and trigger a VVM system

error.

Copyright 2000 N. AYDIN. All rights

reserved. 3

13

VVM Program Editor

14

VVM Program Editor

15

VVM Structure and User Interface

16

VVM System Errors

• Data value out of range. This condition occurs when a data value exceeds the
legitimate range -999 - +999. The condition will be detected while the data resides
in the Accumulator Register. Probable causes are an improper addition or
subtraction operation, or invalid user input.

• Undefined instruction. This occurs when the machine attempts to execute a
three-digit value in the Instruction Register which can not be interpreted as a valid
instruction code. See the help topic "VVM Language" for valid instruction codes
and their meaning. Probable causes of this error are attempting to use a data value
as an instruction, an improper Branch instruction, or failure to provide a Halt
instruction in your program.

• Program counter out of range. This occurs when the Program Counter Register
is incremented beyond the limit of 99. The likely cause is failure to include a Halt
instruction in your program, or a branch to a high memory address.

• User cancel. The user pressed the "Cancel" button during an Input or Output
operation.

17

The Language Instructions

• Load Accumulator (5nn) [LDA nn] The content of RAM address
nn is copied to the Accumulator Register, replacing the current
content of the register. The content of RAM address nn remains
unchanged. The Program Counter Register is incremented by one.

• Store Accumulator (3nn) [STO nn] or [STA nn] The content of
the Accumulator Register is copied to RAM address nn, replacing
the current content of the address. The content of the Accumulator
Register remains unchanged. The Program Counter Register is
incremented by one.

• Add (1nn) [ADD nn] The content of RAM address nn is added to
the content of the Accumulator Register, replacing the current
content of the register. The content of RAM address nn remains
unchanged. The Program Counter Register is incremented by one.

18

The Language Instructions

• Subtract (2nn) [SUB nn] The content of RAM address nn is subtracted from the
content of the Accumulator Register, replacing the current content of the register.
The content of RAM address nn remains unchanged. The Program Counter
Register is incremented by one.

• Input (901) [IN] or [INP] A value input by the user is stored in the Accumulator
Register, replacing the current content of the register. Note that the two-digit
operand does not represent an address in this instruction, but rather specifies the
particulars of the I/O operation (see Output). The operand value can be omitted in
the Assembly Language format. The Program Counter Register is incremented by
one with this instruction.

• Output (902) [OUT] or [PRN] The content of the Accumulator Register is
output to the user. The current content of the register remains unchanged. Note
that the two-digit operand does not represent an address in this instruction, but
rather specifies the particulars of the I/O operation (see Input). The operand value
can be omitted in the Assembly Language format. The Program Counter Register
is incremented by one with this instruction.

Copyright 2000 N. AYDIN. All rights

reserved. 4

19

The Language Instructions

• Branch if Zero (7nn) [BRZ nn] This is a conditional branch instruction. If the
value in the Accumulator Register is zero, then the current value of the Program
Counter Register is replaced by the operand value nn (the result is that the next
instruction to be executed will be taken from address nn rather than from the next
sequential address). Otherwise (Accumulator >< 0), the Program Counter Register is
incremented by one (thus the next instruction to be executed will be taken from the
next sequential address).

• Branch if Positive or Zero (8nn) [BRP nn] This is a conditional branch
instruction. If the value in the Accumulator Register is nonnegative (i.e., >= 0), then
the current value of the Program Counter Register is replaced by the operand value
nn (the result is that the next instruction to be executed will be taken from address
nn rather than from the next sequential address). Otherwise (Accumulator < 0), the
Program Counter Register is incremented by one (thus the next instruction to be
executed will be taken from the next sequential address).

• Branch (6nn) [BR nn] or[BRU nn] or [JMP nn] This is an unconditional branch
instruction. The current value of the Program Counter Register is replaced by the
operand value nn. The result is that the next instruction to be executed will be taken
from address nn rather than from the next sequential address. The value of the
Program Counter Register is not incremented with this instruction.

20

The Language Instructions
• No Operation (4nn) [NOP] or [NUL] This instruction does nothing

other than increment the Program Counter Register by one. The
operand value nn is ignored in this instruction and can be omitted in
the Assembly Language format. (This instruction is unique to the
VVM and is not part of the Little Man Model.)

• Halt (0nn) [HLT] or [COB] Program execution is terminated. The
operand value nn is ignored in this instruction and can be omitted in
the Assembly Language format.

Embedding Data in Programs

• Data values used by a program can be loaded into memory along
with the program. In Machine or Assembly Language form simply
use the format "snnn" where s is an optional sign, and nnn is the
three-digit data value. In Assembly Language, you can specify
"DAT snnn" for clarity.

21

Assembly Language

• Specific to a CPU

• 1 to 1 correspondence between assembly
language instruction and binary (machine)
language instruction

• Mnemonics (short character sequence)
represent instructions

• Used when programmer needs precise control
over hardware, e.g., device drivers

22

Example - Add 2 Numbers

• Assume data is stored

in mailbox address 90

• Let us write instructions

(using Mnemonics)

00 IN; input 1st Number

01 STO 90; store data in memory

location 90

02 IN; input 2nd Number

03 ADD 90; add 1st # to 2nd #

04 OUT; output result

05 COB; stop

90 DAT 00; data

Input a #

Store the #

Input a #

Add

Output the
number

23

Example - Add 2 Numbers (Using Machine code)

Mailbox Code Instruction Description

00 901 ;input 1st Number

01 390 ;store data in memory location 90

02 901 ;input 2nd Number

03 190 ;add 1st # to 2nd #

04 902 ;output result

05 000 ;stop

90 000 ;data

24

Program Control

• Branching (executing an instruction out of

sequence)

– Changes the address in the counter

• Halt
Content

Op Code Operand

(address)

BR (Jump) 6 xx

BRZ (Branch on 0) 7 xx

BRP (Branch on +) 8 xx

COB (stop) 0 (ignore)

Copyright 2000 N. AYDIN. All rights

reserved. 5

25

Instruction Set

ADD 1xx ADD

SUB 2xx SUB

STA or STO 3xx STORE

LDA 5xx LOAD

BR or BRU or JMP 6xx JUMP

BRZ 7xx BRANC ON 0

BRP 8xx BRANCH ON +

IN or INP 901 INPUT

OUT or PRN 902 OUTPUT

NOP or NUL 400 No Operation

HLT or COB 000 HALT (coffee break)

26

Example - Find Positive Difference of 2 Numbers

00 IN 901 ;input 1st Number

01 STO 10 310 ;store data in memory location 10

02 IN 901 ;input 2nd Number

03 STO 11 311 ;store data in memory location 11

04 SUB 10 210 ;subtract 1st # from the 2nd #

05 BRP 08 808 ;test

06 LDA 10 510 ;if negative, reverse order

07 SUB 11 211 ;subtract 2nd # from the 1st #

08 OUT 902 ;print result and

09 HLT 000 ;stop

10 DAT 00 000 ;used for data

11 DAT 00 000 ;used for data

