
Copyright 2000 N. AYDIN. All rights

reserved. 1

Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

1

Information Systems:

Fundamentals

2

Informatics

• The term informatics broadly describes the

study and practice of

– creating,

– storing,

– finding,

– manipulating

– sharing

information.

3

Informatics - Etymology

• In 1956 the German computer scientist Karl

Steinbuch coined the word Informatik
• [Informatik: Automatische Informationsverarbeitung ("Informatics:

Automatic Information Processing")]

• The French term informatique was coined in

1962 by Philippe Dreyfus
• [Dreyfus, Phillipe. L’informatique. Gestion, Paris, June 1962, pp.

240–41]

• The term was coined as a combination of

information and automatic to describe the

science of automating information interactions

4

Informatics - Etymology

• The morphology—informat-ion + -ics—uses

• the accepted form for names of sciences,

– as conics, linguistics, optics,

• or matters of practice,

– as economics, politics, tactics

• linguistically, the meaning extends easily

– to encompass both

• the science of information

• the practice of information processing.

5

Data - Information - Knowledge

• Data

– unprocessed facts and figures without any added

interpretation or analysis.

• {The price of crude oil is $80 per barrel.}

• Information

– data that has been interpreted so that it has meaning

for the user.

• {The price of crude oil has risen from $70 to $80 per

barrel}

– [gives meaning to the data and so is said to be information to

someone who tracks oil prices.]

6

mailto:naydin@yildiz.edu.tr

Copyright 2000 N. AYDIN. All rights

reserved. 2

Data - Information - Knowledge

• Knowledge

– a combination of information, experience and

insight that may benefit the individual or the

organisation.

• {When crude oil prices go up by $10 per barrel, it's

likely that petrol prices will rise by 2p per litre.}

– [This is knowledge]

– [insight: the capacity to gain an accurate and deep

understanding of someone or something; an accurate and deep

understanding]

7

Converting data into information

• Data becomes information when it is applied to

some purpose and adds value for the recipient.

– For example a set of raw sales figures is data.

• For the Sales Manager tasked with solving a problem of poor sales

in one region, or deciding the future focus of a sales drive, the raw

data needs to be processed into a sales report.

– It is the sales report that provides information.

8

Converting data into information

• Collecting data is expensive

– you need to be very clear about why you need it

and how you plan to use it.

– One of the main reasons that organisations collect

data is to monitor and improve performance.

• if you are to have the information you need for control

and performance improvement, you need to:

– collect data on the indicators that really do affect performance

– collect data reliably and regularly

– be able to convert data into the information you need.

9

Converting data into information

• To be useful, data must satisfy a number of

conditions. It must be:

– relevant to the specific purpose

– complete

– accurate

– timely

• data that arrives after you have made your decision is of

no value

10

Converting data into information

– in the right format

• information can only be analysed using a spreadsheet if

all the data can be entered into the computer system

– available at a suitable price

• the benefits of the data must merit the cost of collecting

or buying it.

• The same criteria apply to information.

– It is important

• to get the right information

• to get the information right

11

Converting information to knowledge

• Ultimately the tremendous amount of

information that is generated is only useful if it

can be applied to create knowledge within the

organisation.

• There is considerable blurring and confusion

between the terms information and knowledge.

12

Copyright 2000 N. AYDIN. All rights

reserved. 3

Converting information to knowledge

• think of knowledge as being of two types:

– Formal, explicit or generally available knowledge.

• This is knowledge that has been captured and used to

develop policies and operating procedures for example.

– Instinctive, subconscious, tacit or hidden

knowledge.

• Within the organisation there are certain people who

hold specific knowledge or have the 'know how'

– {"I did something very similar to that last year and this

happened….."}

13

Converting information to knowledge

• Clearly, both types of knowledge are essential

for the organisation.

• Information on its own will not create a

knowledge-based organisation

– but it is a key building block.

• The right information fuels the development of

intellectual capital

– which in turns drives innovation and performance

improvement.

14

• A system can be broadly defined as an integrated set of

elements that accomplish a defined objective.

• People from different engineering disciplines have

different perspectives of what a "system" is.

• For example,

– software engineers often refer to an integrated set of computer

programs as a "system"

– electrical engineers might refer to complex integrated circuits

or an integrated set of electrical units as a "system"

• As can be seen, "system" depends on one’s perspective,

and the “integrated set of elements that accomplish a

defined objective” is an appropriate definition.

Definition(s) of system

15

• A system is an assembly of parts where:

– The parts or components are connected together in an organized way.

– The parts or components are affected by being in the system (and are

changed by leaving it).

– The assembly does something.

– The assembly has been identified by a person as being of special

interest.

• Any arrangement which involves the handling, processing or

manipulation of resources of whatever type can be represented

as a system.

• Some definitions on online dictionaries

– http://en.wikipedia.org/wiki/System

– http://dictionary.reference.com/browse/systems

– http://www.businessdictionary.com/definition/system.html

16

Definition(s) of system

• A system is defined as multiple parts working

together for a common purpose or goal.

• Systems can be large and complex

– such as the air traffic control system or our global

telecommunication network.

• Small devices can also be considered as

systems

– such as a pocket calculator, alarm clock, or 10-

speed bicycle.

Definition(s) of system

17

• Systems have inputs, processes, and outputs.

• When feedback (direct or indirect) is involved,

that component is also important to the

operation of the system.

• To explain all this, systems are usually

explained using a model.

• A model helps to illustrate the major elements

and their relationship, as illustrated in the next

slide

Definition(s) of system

18

http://en.wikipedia.org/wiki/System
http://dictionary.reference.com/browse/systems
http://www.businessdictionary.com/definition/system.html

Copyright 2000 N. AYDIN. All rights

reserved. 4

A systems model

19

• The ways that organizations

– Store

– Move

– Organize

– Process

their information

20

Information Systems

• Components that implement information

systems,

– Hardware

• physical tools: computer and network hardware, but also

low-tech things like pens and paper

– Software

• (changeable) instructions for the hardware

– People

– Procedures

• instructions for the people

– Data/databases

21

Information Technology

22

Digital System

• Takes a set of discrete information (inputs) and

discrete internal information (system state) and

generates a set of discrete information (outputs).

System State

Discrete

Information

Processing

System

Discrete

Inputs Discrete

Outputs

23

Synchronous or

Asynchronous?

Inputs:

Keyboard,

mouse, modem,

microphone

Outputs: CRT,

LCD, modem,

speakers

Memory

Control
unit

Datapath

Input/Output

CPU

A Digital Computer Example

24

Signal

• An information variable represented by physical
quantity.

• For digital systems, the variable takes on discrete
values.

• Two level, or binary values are the most prevalent
values in digital systems.

• Binary values are represented abstractly by:

– digits 0 and 1

– words (symbols) False (F) and True (T)

– words (symbols) Low (L) and High (H)

– and words On and Off.

• Binary values are represented by values or ranges of
values of physical quantities

Copyright 2000 N. AYDIN. All rights

reserved. 5

A typical measurement system

25

Transducers

• A “transducer” is a device that converts energy from one

form to another.

• In signal processing applications, the purpose of energy

conversion is to transfer information, not to transform

energy.

• In physiological measurement systems, transducers may be

– input transducers (or sensors)
• they convert a non-electrical energy into an electrical signal.

• for example, a microphone.

– output transducers (or actuators)
• they convert an electrical signal into a non-electrical energy.

• For example, a speaker.

26

27

Analogue signal

• The analogue signal

– a continuous variable defined with infinite
precision

is converted to a discrete sequence of measured
values which are represented digitally

• Information is lost in converting from analogue
to digital, due to:

– inaccuracies in the measurement

– uncertainty in timing

– limits on the duration of the measurement

• These effects are called quantisation errors
28

Digital signal

• The continuous analogue signal has to be held before

it can be sampled

• Otherwise, the signal would be changing during the

measurement

• Only after it has been held can the signal be measured,

and the measurement converted to a digital value

Signal Encoding: Analog-to Digital Conversion

0 2 4 6 8 10
0

2

4

6

8

10

Time (sec)

x
(t

)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Sample Number

x
(t

)
a

n
d

 x
(n

)

0 2 4 6 8 10
0

2

4

6

8

10

Sample Number

x
(n

)

Digitization

Continuous

Discrete

Continuous (analog) signal ↔ Discrete signal

x(t) = f(t) ↔ Analog to digital conversion ↔ x[n] = x [1], x [2], x [3], ... x[n]

29

• ADC consists of four steps to digitize an analog
signal:

1. Filtering

2. Sampling

3. Quantization

4. Binary encoding

 Before we sample, we have to filter the signal to
limit the maximum frequency of the signal as it
affects the sampling rate.

 Filtering should ensure that we do not distort the
signal, ie remove high frequency components
that affect the signal shape.

Analog-to Digital Conversion

30

Copyright 2000 N. AYDIN. All rights

reserved. 6

31 32

Sampling

• The sampling results in a discrete set of digital

numbers that represent measurements of the signal

– usually taken at equal intervals of time

• Sampling takes place after the hold

– The hold circuit must be fast enough that the signal is not

changing during the time the circuit is acquiring the signal

value

• We don't know what we don't measure

• In the process of measuring the signal, some

information is lost

• Analog signal is sampled every TS secs.

• Ts is referred to as the sampling interval.

• fs = 1/Ts is called the sampling rate or sampling
frequency.

• There are 3 sampling methods:

– Ideal - an impulse at each sampling instant

– Natural - a pulse of short width with varying amplitude

– Flattop - sample and hold, like natural but with single
amplitude value

• The process is referred to as pulse amplitude
modulation PAM and the outcome is a signal with
analog (non integer) values

Sampling

33 34

Recovery of a sampled sine wave for different sampling rates

35 36

Copyright 2000 N. AYDIN. All rights

reserved. 7

37 38

39

According to the Nyquist theorem, the

sampling rate must be

at least 2 times the highest frequency

contained in the signal.

40

Sampling Theorem

Fs  2fm

Nyquist sampling rate for low-pass and bandpass signals

41

• Sampling results in a series of pulses of varying
amplitude values ranging between two limits: a
min and a max.

• The amplitude values are infinite between the two
limits.

• We need to map the infinite amplitude values onto
a finite set of known values.

• This is achieved by dividing the distance between
min and max into L zones, each of height 

 = (max - min)/L

Quantization

42

Copyright 2000 N. AYDIN. All rights

reserved. 8

• The midpoint of each zone is assigned a

value from 0 to L-1 (resulting in L values)

• Each sample falling in a zone is then

approximated to the value of the midpoint.

Quantization Levels

43

• Assume we have a voltage signal with
amplitutes Vmin=-20V and Vmax=+20V.

• We want to use L=8 quantization levels.

• Zone width = (20 - -20)/8 = 5

• The 8 zones are: -20 to -15, -15 to -10, -10
to -5, -5 to 0, 0 to +5, +5 to +10, +10 to
+15, +15 to +20

• The midpoints are: -17.5, -12.5, -7.5, -2.5,
2.5, 7.5, 12.5, 17.5

Quantization Zones

44

• Each zone is then assigned a binary code.

• The number of bits required to encode the zones,
or the number of bits per sample as it is commonly
referred to, is obtained as follows:

nb = log2 L

• Given our example, nb = 3

• The 8 zone (or level) codes are therefore: 000,
001, 010, 011, 100, 101, 110, and 111

• Assigning codes to zones:

– 000 will refer to zone -20 to -15

– 001 to zone -15 to -10, etc.

Assigning Codes to Zones

45

Quantization and encoding of a sampled signal

46

• When a signal is quantized, we introduce an error

– the coded signal is an approximation of the actual
amplitude value.

• The difference between actual and coded value
(midpoint) is referred to as the quantization error.

• The more zones, the smaller 

– which results in smaller errors.

• BUT, the more zones the more bits required to
encode the samples

– higher bit rate

Quantization Error

47

Analog-to-digital Conversion

Example An 12-bit analog-to-digital converter (ADC)

advertises an accuracy of ± the least significant bit (LSB).

If the input range of the ADC is 0 to 10 volts, what is the

accuracy of the ADC in analog volts?

Solution:

If the input range is 10 volts then the analog voltage represented by the LSB

would be:

V
V

LSB    
max

.
2

10

2

10

4096
002412Nu bits

 volts

Hence the accuracy would be ± 0.0024 volts.

48

Copyright 2000 N. AYDIN. All rights

reserved. 9

49

Sampling related concepts

• Over/exact/under sampling

• Regular/irregular sampling

• Linear/Logarithmic sampling

• Aliasing

• Anti-aliasing filter

• Image

• Anti-image filter

50

Steps for digitization/reconstruction of a signal

• Band limiting (LPF)

• Sampling / Holding

• Quantization

• Coding

These are basic steps for

A/D conversion

• D/A converter

• Sampling / Holding

• Image rejection

These are basic steps for

reconstructing a

sampled digital signal

51

Digital data: end product of A/D conversion and related

concepts

• Bit: least digital information, binary 1 or 0

• Nibble: 4 bits

• Byte: 8 bits, 2 nibbles

• Word: 16 bits, 2 bytes, 4 nibbles

• Some jargon:

– integer, signed integer, long integer, 2s

complement, hexadecimal, octal, floating point,

etc.

52

53

Data types

• Our first requirement is to find a way to represent information

(data) in a form that is mutually comprehensible by human and

machine.

– Ultimately, we need to develop schemes for representing all

conceivable types of information - language, images,

actions, etc.

– Specifically, the devices that make up a computer are

switches that can be on or off, i.e. at high or low voltage.

– Thus they naturally provide us with two symbols to work

with:

• we can call them on and off, or 0 and 1.

54

What kinds of data do we need to represent?

Numbers

signed, unsigned, integers, floating point, complex, rational, irrational, …

Text

characters, strings, …

Images

pixels, colors, shapes, …

Sound

Logical

true, false

Instructions

…

Data type:

– representation and operations within the computer

Copyright 2000 N. AYDIN. All rights

reserved. 10

55

• Positive radix, positional number systems

• A number with radix r is represented by a

string of digits:

An - 1An - 2 … A1A0 . A- 1 A- 2 … A- m + 1 A- m

in which 0 Ai < r and . is the radix point.

• The string of digits represents the power series:

() ()(Number)r=  +
j = - m

j
j

i

i = 0
i rArA

(Integer Portion) + (Fraction Portion)

i = n - 1 j = - 1

Number Systems – Representation

56

Decimal Numbers

• “decimal” means that we have ten digits to use in our

representation

– the symbols 0 through 9

• What is 3546?

– it is three thousands plus five hundreds plus four tens plus six

ones.

– i.e. 3546 = 3×103 + 5×102 + 4×101 + 6×100

• How about negative numbers?

– we use two more symbols to distinguish positive and negative:

+ and -

57

Decimal Numbers

• “decimal” means that we have ten digits to use in our

representation (the symbols 0 through 9)

• What is 3546?

– it is three thousands plus five hundreds plus four tens plus

six ones.

– i.e. 3546 = 3.103 + 5.102 + 4.101 + 6.100

• How about negative numbers?

– we use two more symbols to distinguish positive and

negative:

+ and -
58

Unsigned Binary Integers

3-bits 5-bits 8-bits

0 000 00000 00000000

1 001 00001 00000001

2 010 00010 00000010

3 011 00011 00000011

4 100 00100 00000100

Y = “abc” = a.22 + b.21 + c.20

N = number of bits

Range is:

0  i < 2N - 1

(where the digits a, b, c can each take on the values of 0 or 1 only)

Problem:

• How do we represent

negative numbers?

59

Signed Binary Integers
-2s Complement representation-

• Transformation

– To transform a into -a, invert all

bits in a and add 1 to the result

-16 10000

… …

-3 11101

-2 11110

-1 11111

0 00000

+1 00001

+2 00010

+3 00011

… …

+15 01111

Range is:

-2N-1 < i < 2N-1 - 1

Advantages:

• Operations need not check the

sign

• Only one representation for zero

• Efficient use of all the bits
60

Limitations of integer representations

• Most numbers are not integer!
– Even with integers, there are two other considerations:

• Range:
– The magnitude of the numbers we can represent is

determined by how many bits we use:
• e.g. with 32 bits the largest number we can represent is about +/- 2

billion, far too small for many purposes.

• Precision:
– The exactness with which we can specify a number:

• e.g. a 32 bit number gives us 31 bits of precision, or roughly 9
figure precision in decimal repesentation.

• We need another data type!

Copyright 2000 N. AYDIN. All rights

reserved. 11

61

Real numbers

• Our decimal system handles non-integer real numbers

by adding yet another symbol - the decimal point (.) to

make a fixed point notation:

– e.g. 3456.78 = 3.103 + 4.102 + 5.101 + 6.100 + 7.10-1 + 8.10-2

• The floating point, or scientific, notation allows us to

represent very large and very small numbers (integer or

real), with as much or as little precision as needed:

– Unit of electric charge e = 1.602 176 462 x 10-19 Coulomb

– Volume of universe = 1 x 1085 cm3

• the two components of these numbers are called the mantissa and the

exponent

62

Real numbers in binary

• We mimic the decimal floating point notation to create a

“hybrid” binary floating point number:

– We first use a “binary point” to separate whole numbers from

fractional numbers to make a fixed point notation:

• e.g. 00011001.110 = 1.24 + 1.103 + 1.101 + 1.2-1 + 1.2-2 => 25.75

(2-1 = 0.5 and 2-2 = 0.25, etc.)

– We then “float” the binary point:

• 00011001.110 => 1.1001110 x 24

mantissa = 1.1001110, exponent = 4

– Now we have to express this without the extra symbols (x, 2, .)

• by convention, we divide the available bits into three fields:

sign, mantissa, exponent

63

IEEE-754 fp numbers - 1

s biased exp. fraction

1 8 bits 23 bits

N = (-1)s x 1.fraction x 2(biased exp. – 127)

32 bits:

• Sign: 1 bit

• Mantissa: 23 bits

– We “normalize” the mantissa by dropping the leading 1 and
recording only its fractional part (why?)

• Exponent: 8 bits

– In order to handle both +ve and -ve exponents, we add 127
to the actual exponent to create a “biased exponent”:

• 2-127 => biased exponent = 0000 0000 (= 0)

• 20 => biased exponent = 0111 1111 (= 127)

• 2+127 => biased exponent = 1111 1110 (= 254)

64

IEEE-754 fp numbers - 2

• Example: Find the corresponding fp representation of 25.75

• 25.75 => 00011001.110 => 1.1001110 x 24

• sign bit = 0 (+ve)

• normalized mantissa (fraction) = 100 1110 0000 0000 0000 0000

• biased exponent = 4 + 127 = 131 => 1000 0011

• so 25.75 => 0 1000 0011 100 1110 0000 0000 0000 0000 => x41CE0000

• Values represented by convention:

– Infinity (+ and -): exponent = 255 (1111 1111) and fraction = 0

– NaN (not a number): exponent = 255 and fraction  0

– Zero (0): exponent = 0 and fraction = 0

• note: exponent = 0 => fraction is de-normalized, i.e no hidden 1

65

IEEE-754 fp numbers - 3

• Double precision (64 bit) floating point

1 11 bits 52 bits

N = (-1)s x 1.fraction x 2(biased exp. – 1023)

64 bits:

 Range & Precision:
 32 bit:

 mantissa of 23 bits + 1 => approx. 7 digits decimal

 2+/-127 => approx. 10+/-38

 64 bit:
 mantissa of 52 bits + 1 => approx. 15 digits decimal

 2+/-1023 => approx. 10+/-306

s biased exp. fraction

66

• Flexibility of representation

– Within constraints below, can assign any binary
combination (called a code word) to any data as long as
data is uniquely encoded.

• Information Types

– Numeric
• Must represent range of data needed

• Very desirable to represent data such that simple, straightforward
computation for common arithmetic operations permitted

• Tight relation to binary numbers

– Non-numeric
• Greater flexibility since arithmetic operations not applied.

• Not tied to binary numbers

Binary Numbers and Binary Coding

Copyright 2000 N. AYDIN. All rights

reserved. 12

67

• Given n binary digits (called bits), a binary code is a

mapping from a set of represented elements to a

subset of the 2n binary numbers.

• Example: A

binary code

for the seven

colors of the

rainbow

• Code 100 is

not used

Non-numeric Binary Codes

Binary Number

000

001

010

011

101

110

111

Color

Red

Orange

Yellow

Green

Blue

Indigo
Violet

68

• Given M elements to be represented by a
binary code, the minimum number of bits, n,
needed, satisfies the following relationships:

2n > M > 2(n – 1)

n =log2 M where x , called the ceiling
function, is the integer greater than or equal to x.

• Example: How many bits are required to
represent decimal digits with a binary code?

– 4 bits are required (n =log2 9 = 4)

Number of Bits Required

69

Number of Elements Represented

• Given n digits in radix r, there are rn distinct
elements that can be represented.

• But, you can represent m elements, m < rn

• Examples:

– You can represent 4 elements in radix r = 2 with n
= 2 digits: (00, 01, 10, 11).

– You can represent 4 elements in radix r = 2 with n
= 4 digits: (0001, 0010, 0100, 1000).

70

Binary Coded Decimal (BCD)

• In the 8421 Binary Coded Decimal (BCD)

representation each decimal digit is converted to its 4-

bit pure binary equivalent

• This code is the simplest, most intuitive binary code

for decimal digits and uses the same powers of 2 as a

binary number,

– but only encodes the first ten values from 0 to 9.

• For example: (57)dec  (?) bcd

(5 7) dec

= (0101 0111)bcd

71

Error-Detection Codes

• Redundancy (e.g. extra information), in the form of
extra bits, can be incorporated into binary code words
to detect and correct errors.

• A simple form of redundancy is parity, an extra bit
appended onto the code word to make the number of
1’s odd or even.

– Parity can detect all single-bit errors and some multiple-bit
errors.

• A code word has even parity if the number of 1’s in
the code word is even.

• A code word has odd parity if the number of 1’s in the
code word is odd.

72

4-Bit Parity Code Example

• Fill in the even and odd parity bits:

• The codeword "1111" has even parity and the
codeword "1110" has odd parity. Both can be used to
represent 3-bit data.

Even Parity Odd Parity
Message - Parity Message - Parity

000 - 000 -
001 - 001 -
010 - 010 -
011 - 011 -
100 - 100 -
101 - 101 -
110 - 110 -
111 - 111 -

Copyright 2000 N. AYDIN. All rights

reserved. 13

73

ASCII Character Codes

• American Standard Code for Information Interchange

• This code is a popular code used to represent
information sent as character-based data.

• It uses 7- bits to represent
– 94 Graphic printing characters

– 34 Non-printing characters

• Some non-printing characters are used for text format
– e.g. BS = Backspace, CR = carriage return

• Other non-printing characters are used for record
marking and flow control
– e.g. STX = start text areas, ETX = end text areas.

ASCII Properties

• ASCII has some interesting properties:

• Digits 0 to 9 span Hexadecimal values 3016 to

3916

• Upper case A-Z span 4116 to 5A16

• Lower case a-z span 6116 to 7A16
– Lower to upper case translation (and vice versa) occurs by

flipping bit 6

• Delete (DEL) is all bits set,
– a carryover from when punched paper tape was used to

store messages

74

75

UNICODE

• UNICODE extends ASCII to 65,536

universal characters codes

– For encoding characters in world languages

– Available in many modern applications

– 2 byte (16-bit) code words

76

Warning: Conversion or Coding?

• Do NOT mix up "conversion of a decimal

number to a binary number" with "coding a

decimal number with a binary code".

• 1310 = 11012

–This is conversion

• 13  0001 0011BCD

–This is coding

77

Another use for bits: Logic

• Beyond numbers

– logical variables can be true or false, on or off, etc., and so
are readily represented by the binary system.

– A logical variable A can take the values false = 0 or true = 1
only.

– The manipulation of logical variables is known as Boolean
Algebra, and has its own set of operations

• which are not to be confused with the arithmetical operations.

– Some basic operations: NOT, AND, OR, XOR

78

• Binary variables take on one of two values.

• Logical operators operate on binary values and

binary variables.

• Basic logical operators are the logic functions

AND, OR and NOT.

• Logic gates implement logic functions.

• Boolean Algebra: a useful mathematical system

for specifying and transforming logic functions.

• We study Boolean algebra as foundation for

designing and analyzing digital systems!

Binary Logic and Gates

Copyright 2000 N. AYDIN. All rights

reserved. 14

79

• Recall that the two binary values have
different names:

– True/False

– On/Off

– Yes/No

– 1/0

• We use 1 and 0 to denote the two values.

• Variable identifier examples:

– A, B, y, z, or X1 for now

– RESET, START_IT, or ADD1 later

Binary Variables

80

• The three basic logical operations are:

– AND

– OR

– NOT

• AND is denoted by a dot (·)

• OR is denoted by a plus (+)

• NOT is denoted by an overbar (¯), a

single quote mark (') after, or (~) before

the variable

Logical Operations

81

• Examples:

– Y=A.B is read “Y is equal to A AND B.”

– z=x+y is read “z is equal to x OR y.”

– X=Ā is read “X is equal to NOT A.”

 Note: The statement:

1 + 1 = 2 (read “one plus one equals two”)

is not the same as

1 + 1 = 1 (read “1 or 1 equals 1”).

Notation Examples

82

 Operations are defined on the values

"0" and "1" for each operator:

AND

0 · 0 = 0

0 · 1 = 0

1 · 0 = 0

1 · 1 = 1

OR

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

NOT

10 

01 

Operator Definitions

83

01

10

X

NOT

XZ

• Truth table - a tabular listing of the values of a

function for all possible combinations of values on its

arguments

• Example: Truth tables for the basic logic operations:

111

001

010

000

Z = X·YYX

AND OR

X Y Z = X+Y

0 0 0

0 1 1

1 0 1

1 1 1

Truth Tables

84

Transistor: Building Block of Computers

•Microprocessors contain millions of transistors

– Intel Pentium 4 (2000): 48 million

– IBM PowerPC 750FX (2002): 38 million

– IBM/Apple PowerPC G5 (2003): 58 million

•Logically, each transistor acts as a switch

•Combined to implement logic functions

– AND, OR, NOT

•Combined to build higher-level structures

– Adder, multiplexer, decoder, register, …

•Combined to build processor

Copyright 2000 N. AYDIN. All rights

reserved. 15

85

Building Functions from Logic Gates

•Combinational Logic Circuit

– output depends only on the current inputs

– stateless

•Sequential Logic Circuit

– output depends on the sequence of inputs (past and

present)

– stores information (state) from past inputs

86

Basic Logic Gates

87

Waveform behavior in time

Timing diagram

X 0 0 1 1

Y 0 1 0 1

X ·Y(AND) 0 0 0 1

X + Y(OR) 0 1 1 1

(NOT) X 1 1 0 0

OR gate

X

Y
Z = X + Y

X

Y
Z = X ·Y

AND gate

X Z = X

NOT gate or
inverter

88

• Boolean equations, truth tables and logic diagrams describe
the same function!

• Truth tables are unique; expressions and logic diagrams are
not. This gives flexibility in implementing functions.

X

Y F

Z

Logic Diagram

Equation

ZYX F +

Truth Table

11 1 1

11 1 0

11 0 1

11 0 0

00 1 1

00 1 0

10 0 1

00 0 0

X Y Z ZYX F +

Logic Diagrams and Expressions

89

Involution

Idempotence

Existence of complement

Existence of 0 and1

Commutative

Associative

Distributive

DeMorgan’s

2. X . 1 X=

4. X . 0 0=

6. X . X X=

8. 0=X . X

 An algebraic structure defined on a set of at least two elements, B,

together with three binary operators (denoted +, · and) that

satisfies the following basic identities:

10. X + Y Y + X=

12. (X + Y) Z+ X + (Y Z)+=

14. X(Y + Z) XY XZ+=

16. X + Y X . Y=

11. XY YX=

13. (XY)Z X(YZ)=

15. X + YZ (X + Y) (X + Z)=

17. X . Y X + Y=

1. X + 0 X=

3. +X 1 1=

5. X + X X=

7. 1=X + X

9. X = X

Boolean Algebra

90

 The order of evaluation in a Boolean

expression is:
1. Parentheses
2. NOT
3. AND
4. OR

 Consequence: Parentheses appear

around OR expressions

 Example: F = A(B + C)(C + D)

Boolean Operator Precedence

Copyright 2000 N. AYDIN. All rights

reserved. 16

91

A + A·B = A (Absorption Theorem)

Proof Steps Justification (identity or theorem)

A + A·B

= A · 1 + A · B X = X · 1

= A · (1 + B) X · Y + X · Z = X ·(Y + Z)(Distributive Law)

= A · 1 1 + X = 1

= A X · 1 = X

• Our primary reason for doing proofs is to learn:

– Careful and efficient use of the identities and theorems of
Boolean algebra, and

– How to choose the appropriate identity or theorem to apply
to make forward progress, irrespective of the application.

Example 1: Boolean Algebraic Proof

92

AB + AC + BC = AB + AC (Consensus Theorem)

Proof Steps: Justification (identity or theorem)

AB + AC + BC

= AB + AC + 1 · BC

= AB + AC + (A + A) · BC

= AB + AC + ABC + ABC

= AB (1+C) + AC (1+B)

= AB · 1 + AC · 1

= AB + AC

Example 2: Boolean Algebraic Proofs

93

Proof Steps Justification (identity or theorem)

=

YXZ)YX(++

)ZX(XZ)YX(+++ Y Y

Example 3: Boolean Algebraic Proofs

94

() Absorption xyxxxyxx ++

x yy LawssDeMorgan'xx + y x + y

()() ninimizatioMyyyxyyyx ++ + x x

zyxzyzyx +++++ x x() () () () ()
+++ Consensuszyxzyzyx  x x

() tionSimplificayxyxyxyx +++ x x

Useful Theorems

95

yyyx  x+

()() yyyx ++ x

Proof of Simplification

96

+ yx x y

yx  yx +

Proof of DeMorgan’s Laws

Copyright 2000 N. AYDIN. All rights

reserved. 17

97

x y z F1 F2 F3 F4

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 0 0

1 0 0 0 1

1 0 1 0 1

1 1 0 1 1

1 1 1 0 1

zxyxF4 +

xyF1 z

xF2  yz+

xzyxzyxF3 + y+

Boolean Function Evaluation

1

0

0

1

1

1

0

0

0

1

0

1

1

1

0

0

98

More than 2 Inputs?

•AND/OR can take any number of inputs.

AND = 1 if all inputs are 1.

OR = 0 if any input is 0.

Similar for NAND/NOR.

•Can implement with multiple two-input gates,

or with single CMOS circuit.

99

Functions and Functional Blocks

• The functions considered are those found to be very

useful in design

• Corresponding to each of the functions is a

combinational circuit implementation called a

functional block.

• In the past, many functional blocks were implemented

as SSI, MSI, and LSI circuits.

• Today, they are often simply parts within a VLSI

circuit.

100

Rudimentary Logic Functions

• Functions of a single variable X

• Can be used on the

inputs to functional

blocks to implement

other than the block’s

intended function

Functions of One Variable

X F = 0 F = X F = F = 1

0

1

0

0

0

1

1

0

1

1

X

0

1

F 0

F 1

(a)

F 0

F 1

VCC or V DD

(b)

X F X

(c)

X F X

(d)

101

Multiple-bit Rudimentary Functions

• Multi-bit Examples:

• A wide line is used to represent

a bus which is a vector signal

• In (b) of the example, F = (F3, F2, F1, F0) is a bus.

• The bus can be split into individual bits as shown in (b)

• Sets of bits can be split from the bus as shown in (c)

for bits 2 and 1 of F.

• The sets of bits need not be continuous as shown in (d) for bits 3, 1, and 0

of F.

4 2:1 F(2:1)
2

F

(c)

F

(d)

4 3,1:0 F(3), F(1:0)
3

0

F3

1 F2

F1

A F0

(a)

A

0

1

A

1

2
3

4
F

0

(b)

A

102

Enabling Function

• Enabling permits an input signal to pass through to an

output

• Disabling blocks an input signal from passing through

to an output, replacing it with a fixed value

• The value on the output when it is disable can be Hi-Z

(as for three-state buffers and transmission gates), 0 ,

or 1

• When disabled, 0 output

• When disabled, 1 output

• Enabling applications?

X
F

EN

(a)

EN

X
F

(b)

Copyright 2000 N. AYDIN. All rights

reserved. 18

103

• Decoding - the conversion of an n-bit input

code to an m-bit output code with

n m  2n such that each valid code word

produces a unique output code

• Circuits that perform decoding are called

decoders

• Here, functional blocks for decoding are

– called n-to-m line decoders, where m  2n, and

– generate 2n (or fewer) minterms for the n input

variables

Decoding

104

• 1-to-2-Line Decoder

• 2-to-4-Line Decoder

 Note that the 2-4-line

made up of 2 1-to-2-

line decoders and 4 AND gates.

Decoder Examples

A D 0 D 1

0 1 0

1 0 1

(a) (b)

D 1 = AA

D 0 = A

A 1

0

0

1

1

A 0

0

1

0

1

D 0

1

0

0

0

D 1

0

1

0

0

D 2

0

0

1

0

D 3

0

0

0

1

(a)

D 0 = A 1 A 0

D 1 = A 1 A 0

D 2 = A 1 A 0

D 3 = A 1 A 0

(b)

A 1

A 0

105

Decoder Expansion - Example

• Result

106

• In general, attach m-enabling circuits to the outputs

• Truth table for the function

– Note use of X’s to denote both 0 and 1

– Combination containing two X’s represent four binary combinations

• Alternatively, can be viewed as distributing value of signal EN to

1 of 4 outputs

• In this case, called a

demultiplexer

Decoder with Enable

EN

A1

A0

D0

D1

D2

D3

(b)

EN A1 A0 D0 D1 D2 D3

0

1

1

1

1

X

0

0

1

1

X

0

1

0

1

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

(a)

107

Encoding

• Encoding - the opposite of decoding - the conversion of

an m-bit input code to a n-bit output code with n m 

2n such that each valid code word produces a unique

output code

• Circuits that perform encoding are called encoders

• An encoder has 2n (or fewer) input lines and n output

lines which generate the binary code corresponding to

the input values

• Typically, an encoder converts a code containing exactly

one bit that is 1 to a binary code corresponding to the

position in which the 1 appears.

108

• Selecting of data or information is a critical
function in digital systems and computers

• Circuits that perform selecting have:

– A set of information inputs from which the
selection is made

– A single output

– A set of control lines for making the selection

• Logic circuits that perform selecting are called
multiplexers

• Selecting can also be done by three-state logic
or transmission gates

Selecting

Copyright 2000 N. AYDIN. All rights

reserved. 19

109

Multiplexers

• A multiplexer selects information from an input

line and directs the information to an output line

• A typical multiplexer has n control inputs (Sn - 1,

… S0) called selection inputs, 2n information

inputs (I2
n
- 1, … I0), and one output Y

• A multiplexer can be designed to have m

information inputs with m <2n as well as n

selection inputs

110

2-to-1-Line Multiplexer

• Since 2 = 21, n = 1

• The single selection variable S has two values:

– S = 0 selects input I0

– S = 1 selects input I1

• The equation:

Y = I0 + SI1

• The circuit:

S

S

I0

I1

Decoder
Enabling
Circuits

Y

111

Example: 4-to-1-line Multiplexer

• 2-to-22-line decoder

• 22  2 AND-OR

S1

Decoder

S0

Y

S1

Decoder

S0

Y

S1

Decoder

4 x 2 AND-OR
S0

Y

I2

I3

I1

I0

112

Multiplexer Width Expansion

• Select “vectors of bits” instead of “bits”

• Use multiple copies of 2n  2 AND-OR in parallel

• Example:

4-to-1-line

quad multi-

plexer

113

Functional Blocks: Addition

• Binary addition used frequently

• Addition Development:

– Half-Adder (HA), a 2-input bit-wise addition
functional block,

– Full-Adder (FA), a 3-input bit-wise addition
functional block,

– Ripple Carry Adder, an iterative array to
perform binary addition, and

– Carry-Look-Ahead Adder (CLA), a hierarchical
structure to improve performance.

114

Functional Block: Half-Adder

• A 2-input, 1-bit width binary adder that performs the

following computations:

• A half adder adds two bits to produce a two-bit sum

• The sum is expressed as a

sum bit , S and a carry bit, C

• The half adder can be specified

as a truth table for S and C 

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 0 0 1 0 1 1 0

X Y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Copyright 2000 N. AYDIN. All rights

reserved. 20

115

Implementations: Half-Adder

• The most common half

adder implementation is (e)

• A NAND only implementation is:

YXC
YXS




)(C)YX(

X
Y

C

S

X

Y

C

S

C)YX(S +

116

Functional Block: Full-Adder

• A full adder is similar to a half adder, but includes a carry-

in bit from lower stages. Like the half-adder, it computes

a sum bit, S and a carry bit, C.

– For a carry-in (Z) of

0, it is the same as

the half-adder:

– For a carry- in

(Z) of 1:

Z 0 0 0 0

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 0 0 1 0 1 1 0

Z 1 1 1 1

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 1 1 0 1 0 1 1

117

Logic Optimization: Full-Adder

• Full-Adder Truth Table:

• Full-Adder K-Map:

X Y Z C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

X

Y

Z

0 1 3 2

4 5 7 6
1

1

1

1

S

X

Y

Z

0 1 3 2

4 5 7 6
1 11

1

C

118

Equations: Full-Adder

• From the K-Map, we get:

• The S function is the three-bit XOR function (Odd
Function):

• The Carry bit C is 1 if both X and Y are 1 (the sum is 2), or
if the sum is 1 and a carry-in (Z) occurs. Thus C can be
re-written as:

• The term X·Y is carry generate.

• The term XY is carry propagate.

ZYZXYXC
ZYXZYXZYXZYXS

++
+++

ZYXS 

Z)YX(YXC +

119

Implementation: Full Adder

• Full Adder Schematic

• Here X, Y, and Z, and C
(from the previous pages)
are A, B, Ci and Co,
respectively. Also,

G = generate and

P = propagate.

• Note: This is really a combination
of a 3-bit odd function (for S)) and
Carry logic (for Co):

(G = Generate) OR (P =Propagate AND Ci = Carry In)

Co  G + P · Ci

Ai Bi

Ci

Ci+1

Gi

Pi

Si

120

4-bit Ripple-Carry Binary Adder

• A four-bit Ripple Carry Adder made from four 1-

bit Full Adders:

B3 A 3

FA

B2 A 2

FA

B1

S3C4

C0

C3 C2 C1

S2 S1 S0

A 1

FA

B0 A 0

FA

Copyright 2000 N. AYDIN. All rights

reserved. 21

121

2’s Complement Adder/Subtractor

• Subtraction can be done by addition of the 2's Complement.

1. Complement each bit (1's Complement.)

2. Add 1 to the result.

• The circuit shown computes A + B and A – B:

• For S = 1, subtract,

the 2’s complement

of B is formed by using

XORs to form the 1’s

comp and adding the 1

applied to C0.

• For S = 0, add, B is

passed through

unchanged

FA FA FA FA

S

B3

C3

S2 S1 S0S3C4

C2 C1 C0

A 3 B2 A 2 B1 A 1 B0 A 0

122

Combinational vs. Sequential

•Combinational Circuit

– always gives the same output for a given set of

inputs

• ex: adder always generates sum and carry,

regardless of previous inputs

•Sequential Circuit

– stores information

– output depends on stored information (state) plus

input

• so a given input might produce different outputs,

depending on the stored information

123

• Combinatorial Logic

– Next state function

Next State = f(Inputs, State)

– Output function (Mealy)

Outputs = g(Inputs, State)

– Output function (Moore)

Outputs = h(State)

• Output function type depends on specification and affects the

design significantly

Introduction to Sequential Circuits

Combina-

tional

Logic
Storage

Elements

Inputs Outputs

State

Next

State

124

R-S Latch: Simple Storage Element

•R is used to “reset” or “clear” the element – set it to zero.

•S is used to “set” the element – set it to one.

•If both R and S are one, out could be either zero or one.

– “quiescent” state -- holds its previous value

– note: if a is 1, b is 0, and vice versa

1

0

1

1

1

1

0

0

1

1

0

0

1

1

125

R-S Latch Summary

•R = S = 1

– hold current value in latch

•R=1, S = 0

– set value to 1

•R = 0, S = 1

– set value to 0

•R = S = 0

– both outputs equal one

– final state determined by electrical properties of gates

– Don’t do it!

126

D Latch

• Adding an inverter

to the S-R Latch,

gives the D Latch:

• Note that there are

no “indeterminate”

states!

Q D Q(t+1) Comment

0 0 0 No change

0 1 1 Set Q

1 0 0 Clear Q

1 1 1 No Change

The graphic symbol for a

D Latch is:

C

D Q

Q

D
Q

C

Q

Copyright 2000 N. AYDIN. All rights

reserved. 22

127

Register

•A register stores a multi-bit value.
– We use a collection of D-latches, all controlled by a common WE.

– When WE=1, n-bit value D is written to register.

128

Representing Multi-bit Values

•Number bits from right (0) to left (n-1)

– just a convention -- could be left to right, but must be consistent

•Use brackets to denote range:

D[l:r] denotes bit l to bit r, from left to right

•May also see A<14:9>,

especially in hardware block diagrams.

A = 0101001101010101

A[2:0] = 101A[14:9] = 101001

015

129

Memory

•Now that we know how to store bits,

we can build a memory – a logical k × m array of

stored bits.

•
•
•

k = 2n

locations

m bits

Address Space:

number of locations
(usually a power of 2)

Addressability:

number of bits per location
(e.g., byte-addressable)

130

22 x 3 Memory

address

decoder

word select word WE
address

write

enable

input bits

output bits

131

More Memory Details

•This is a not the way actual memory is implemented.

– fewer transistors, much more dense,

relies on electrical properties

•But the logical structure is very similar.

– address decoder

– word select line

– word write enable

•Two basic kinds of RAM (Random Access Memory)

•Static RAM (SRAM)

– fast, maintains data as long as power applied

•Dynamic RAM (DRAM)

– slower but denser, bit storage decays – must be periodically refreshed

Also, non-volatile memories: ROM, PROM, flash, …

132

State Machine

•Another type of sequential circuit

– Combines combinational logic with storage

– “Remembers” state, and changes output (and state)

based on inputs and current state

State Machine

Combinational

Logic Circuit

Storage

Elements

Inputs Outputs

Copyright 2000 N. AYDIN. All rights

reserved. 23

133

Combinational vs. Sequential

•Two types of “combination” locks

4 1 8 4

30

15

5

1020

25

Combinational

Success depends only on

the values, not the order in

which they are set.

Sequential

Success depends on

the sequence of values

(e.g, R-13, L-22, R-3).

134

The Clock

•Frequently, a clock circuit triggers transition from

one state to the next.

•At the beginning of each clock cycle,

state machine makes a transition,

based on the current state and the external inputs.

“1”

“0”

timeOne

Cycle

135

Implementing a Finite State Machine

•Combinational logic

– Determine outputs and next state.

•Storage elements

– Maintain state representation.

State Machine

Combinational

Logic Circuit

Storage

Elements

Inputs Outputs

Clock

136

Storage: Master-Slave Flipflop

•A pair of gated D-latches,

to isolate next state from current state.

During 1st phase (clock=1),

previously-computed state

becomes current state and is

sent to the logic circuit.

During 2nd phase (clock=0),

next state, computed by

logic circuit, is stored in

Latch A.

137

Storage

•Each master-slave flipflop stores one state bit.

•The number of storage elements (flipflops) needed

is determined by the number of states

(and the representation of each state).

•Examples:

– Sequential lock

• Four states – two bits

138

Finite State Machine

• A description of a system with the following components:

1. A finite number of states

2. A finite number of external inputs

3. A finite number of external outputs

4. An explicit specification of all state transitions

5. An explicit specification of what determines each

external output value

• Often described by a state diagram.

– Inputs trigger state transitions.

– Outputs are associated with each state (or with each transition).

Copyright 2000 N. AYDIN. All rights

reserved. 24

139

State of Sequential Lock

Our lock example has four different states,

labelled A-D:

A: The lock is not open,

and no relevant operations have been performed.

B: The lock is not open,

and the user has completed the R-13 operation.

C: The lock is not open,

and the user has completed R-13, followed by L-22.

D: The lock is open.

140

State Diagram

•Shows states and

actions that cause a transition between states.

141

Sequential Circuit Design Procedure

• Specification

• Formulation
– Obtain a state diagram or state table

• State Assignment
– Assign binary codes to the states

• Flip-Flop Input Equation Determination
– Select flip-flop types and derive flip-flop equations from next state entries in

the table

• Output Equation Determination
– Derive output equations from output entries in the table

• Optimization
– Optimize the equations

• Technology Mapping
– Find circuit from equations and map to flip-flops and gate technology

• Verification
– Verify correctness of final design

142

Example: Sequence Recognizer Procedure

• To develop a sequence recognizer state diagram:

– Begin in an initial state in which NONE of the initial portion of the
sequence has occurred (typically “reset” state).

– Add a state that recognizes that the first symbol has occurred.

– Add states that recognize each successive symbol occurring.

– The final state represents the input sequence (possibly less the
final input value) occurence.

– Add state transition arcs which specify what happens when a
symbol not in the proper sequence has occurred.

– Add other arcs on non-sequence inputs which transition to states
that represent the input subsequence that has occurred.

• The last step is required because the circuit must recognize the input
sequence regardless of where it occurs within the overall sequence
applied since “reset.”.

143

State Assignment

• Each of the m states must be assigned a

unique code

• Minimum number of bits required is n such

that

n ≥ log2 m

where x is the smallest integer ≥ x

• There are useful state assignments that use

more than the minimum number of bits

• There are 2n - m unused states

144

Sequence Recognizer Example

• Example: Recognize the sequence 1101

– Note that the sequence 1111101 contains 1101 and "11" is a proper
sub-sequence of the sequence.

• Thus, the sequential machine must remember that the first
two one's have occurred as it receives another symbol.

• Also, the sequence 1101101 contains 1101 as both an
initial subsequence and a final subsequence with some
overlap, i. e., 1101101 or 1101101.

• And, the 1 in the middle, 1101101, is in both
subsequences.

• The sequence 1101 must be recognized each time it occurs
in the input sequence.

Copyright 2000 N. AYDIN. All rights

reserved. 25

145

Example: Recognize 1101

• Define states for the sequence to be recognized:

– assuming it starts with first symbol,

– continues through each symbol in the sequence to be recognized, and

– uses output 1 to mean the full sequence has occurred,

– with output 0 otherwise.

• Starting in the initial state (Arbitrarily named "A"):

– Add a state that
recognizes the first "1."

– State "A" is the initial state, and state "B" is the state which represents
the fact that the "first" one in the input subsequence has occurred.

– The output symbol "0" means that the full recognized sequence has
not yet occurred.

A B
1/0

146

• After one more 1, we have:

– C is the state obtained

when the input sequence

has two "1"s.

• Finally, after 110 and a 1, we have:

– Transition arcs are used to denote the output function (Mealy Model)

– Output 1 on the arc from D means the sequence has been recognized

– To what state should the arc from state D go? Remember: 1101101 ?

– Note that D is the last state but the output 1 occurs for the input applied

in D. This is the case when a Mealy model is assumed.

Example: Recognize 1101 ...

A B
1/0

C
1/0

A B
1/0

C
1/0 0/0

D
1/1

147

Example: Recognize 1101 ...

• Clearly the final 1 in the recognized sequence 1101

is a sub-sequence of 1101. It follows a 0 which is

not a sub-sequence of 1101. Thus it should

represent the same state reached from the initial

state after a first 1 is observed. We obtain:

1/1

DA B
1/0

C
1/0 0/0

A B1/0
C

1/0 0/0
D

1/1

23Ekim2k8

148

Example: Recognize 1101 ...

• The state have the following abstract meanings:

– A: No proper sub-sequence of the sequence has

occurred.

– B: The sub-sequence 1 has occurred.

– C: The sub-sequence 11 has occurred.

– D: The sub-sequence 110 has occurred.

– The 1/1 on the arc from D to B means that the last 1 has

occurred and thus, the sequence is recognized.

1/1

A B
1/0

C
1/0

D
0/0

149

Example: Recognize 1101 ...

• The other arcs are added to each state for
inputs not yet listed. Which arcs are
missing?
– "0" arc from A

– "0" arc from B

– "1" arc from C

– "0" arc from D.

1/1

A B
1/0

C
1/0

D
0/0

150

Example: Recognize 1101 ...

• State transition arcs must represent the fact that an
input subsequence has occurred. Thus we get:

• Note that the 1 arc from state C to state C implies
that State C means two or more 1's have occurred.

C

1/1

A B
1/0 1/0

D
0/0

0/0

0/0 1/0

0/0

Copyright 2000 N. AYDIN. All rights

reserved. 26

151

Formulation: Find State Table

• From the State Diagram, we can fill in the State Table.

• There are 4 states, one

input, and one output.

We will choose the form

with four rows, one for

each current state.

• From State A, the 0 and 1

input transitions have

been filled in along with

the outputs.

1/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

0/0

Present

State

Next State

x=0 x=1

Output

x=0 x=1

A

B

C

D

1/0

B 0

0/0

A 0

152

Formulation: Find State Table

• From the state diagram,

we complete the
state table.

• What would the state diagram and state table look
like for the Moore model?

1/00/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

State
Present Next State

x=0 x=1
Output

x=0 x=1
A A B 0 0
B A C 0 0

C D C 0 0

D A B 0 1

153

Example: Moore Model for Sequence 1101

• For the Moore Model, outputs are associated with

states.

• We need to add a state "E" with output value 1 for

the final 1 in the recognized input sequence.

– This new state E, though similar to B, would generate an

output of 1 and thus be different from B.

• The Moore model for a sequence recognizer usually

has more states than the Mealy model.

154

Example: Moore Model ...

• We mark outputs on

states for Moore model

• Arcs now show only

state transitions

• Add a new state E to

produce the output 1

• Note that the new state,

E produces the same behavior

in the future as state B. But it gives a different output at the

present time. Thus these states do represent a different

abstraction of the input history.

A/0 B/0 C/0 D/0

0

E/1

0

0

0

11

1

1
10

155

Example: Moore Model ...

• The state table is shown

below

A/0 B/0 C/0 D/0

0

E/1

0

0

0

11

1

1
10

Present

State

Next State

x=0 x=1

Output

y

A A B 0

B A C 0

C D C 0

D A E 0

E A C 1

156

• How may assignments of codes with a
minimum number of bits?

– Two

A = 0, B = 1 or A = 1, B = 0

• Does it make a difference?

– Only in variable inversion, so small, if any.

State Assignment – Example 1

Present

State

Next State

x=0 x=1

Output

x=0 x=1

A A B 0 0

B A B 0 1

Copyright 2000 N. AYDIN. All rights

reserved. 27

157

• How may assignments of codes with a
minimum number of bits?

4  3  2  1 = 24

• Does code assignment make a difference in
cost?

State Assignment – Example 2

Present

State

Next State

x=0 x=1

Output

x=0 x=1

A A B 0 0

B A C 0 0

C D C 0 0

D A B 0 1

158

• Assignment 1: A = 0 0, B = 0 1, C = 1 0, D = 1 1

• The resulting coded state table:

State Assignment – Example 2 ...

Present

State

Next State

x = 0 x = 1

Output

x = 0 x = 1

0 0 0 0 0 1 0 0

0 1 0 0 1 0 0 0

1 0 1 1 1 0 0 0

1 1 0 0 0 1 0 1

159

• Assignment 2: A = 0 0, B = 0 1, C = 1 1, D = 1 0

• The resulting coded state table:

State Assignment – Example 2 ...

Present

State

Next State

x = 0 x = 1

Output

x = 0 x = 1

0 0 0 0 0 1 0 0

0 1 0 0 1 1 0 0

1 1 1 0 1 1 0 0

1 0 0 0 0 1 0 1

160

Find Flip-Flop Input and Output Equations:

Example 2 - Assignment 1

Y2

Y1

X

1

0

00

00

0

0

Y2

Y1

X

0

0

10

10

0

1

Y2

Y1

X

1

0

00

00

1

1

D1 D2
Z

 Assume D flip-flops

 Interchange the bottom two rows of the state

table, to obtain K-maps for D1, D2, and Z:

161

Optimization: Example 2: Assignment 1

• Performing two-level optimization:

D1 = Y1Y2 + XY1Y2

D2 = XY1Y2 + XY1Y2 + XY1Y2

Z = XY1Y2 Gate Input Cost = 22

Y2

Y1

X

1

0

00

00

0

0

Y2

Y1

X

0

0

10

10

0

1

Y2

Y1

X

1

0

00

00

1

1

D1 D2 Z

162

Find Flip-Flop Input and Output Equations:

Example 2 - Assignment 2

Y2

Y1

X

1

0

00

00

0

0

Y2

Y1

X

1

0

10

10

1

0

Y2

Y1

X

0

0

00

11

1

0

• Assume D flip-flops

• Obtain K-maps for D1, D2, and Z:

D1 D2
Z

Copyright 2000 N. AYDIN. All rights

reserved. 28

163

Optimization: Example 2: Assignment 2

• Performing two-level optimization:

D1 = Y1Y2 + XY2 Gate Input Cost = 9

D2 = X Select this state assignment for

Z = XY1Y2 completion of the design

Y2

Y1

X

1

0

00

00

0

0

Y2

Y1

X

1

0

10

10

1

0

Y2

Y1

X

0

0

00

11

1

0

D1 D2
Z

164

• Library:

– D Flip-flops

with Reset

(not inverted)

– NAND gates

with up to 4

inputs and

inverters

 Initial Circuit:

Map Technology

Clock

D

D

C
R

Y2

Z

C
R

Y1

X

Reset

165

Mapped Circuit - Final Result

Clock

D

D

C

R

Y2

Z

C
R

Y1

X

Reset

166

SCHEMATICS &

SIMULATION
LAYOUT MIXED

SIGNAL

INTEGRATION

FINAL

SYNTHESIS &

SIMULATION

STATIC

TIMING

ANALYSIS

LAYOUT,

PLACE & ROUTE
FINAL

MIXED

SIGNAL

INTEGRATION

VHDL

Cadence

Leapfrog

Synopsys

Design
Analyzer

VERILOG

Virtuoso

Virtuoso
Mixed
Signal

Synopsys

DC shell
PEARL Silicon

Ensembl
e

GDSII
for

foundry

GDSII

Cadence

Spectre

ANALOGUE

DIGITAL

Typical mixed signal design flow

The chip manufacturing process

167

A 12-inch (300 mm) wafer of Intel Core i7 (Courtesy Intel)

168

Copyright 2000 N. AYDIN. All rights

reserved. 29

169

SRAMAnalogue signal

conditioning

modules

uProcessor

ADC

Serial-parallel

interface

Oscillator+DAC

DS-SS

Encoder

Hall-effect

sensor

RF

Clock

divider

Typical post synthesis layout

170

Picture of the fabricated chip

171 172

Testing board for the chip

Top side Bottom side

