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Information Systems:

Fundamentals
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Informatics

• The term informatics broadly describes the 

study and practice of 

– creating, 

– storing, 

– finding, 

– manipulating 

– sharing 

information. 

3

Informatics - Etymology

• In 1956 the German computer scientist Karl 

Steinbuch coined the word Informatik
• [Informatik: Automatische Informationsverarbeitung ("Informatics: 

Automatic Information Processing")]

• The French term informatique was coined in 

1962 by Philippe Dreyfus
• [Dreyfus, Phillipe. L’informatique. Gestion, Paris, June 1962, pp. 

240–41]

• The term was coined as a combination of 

information and automatic to describe the 

science of automating information interactions
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Informatics - Etymology

• The morphology—informat-ion + -ics—uses 

• the accepted form for names of sciences, 

– as conics, linguistics, optics, 

• or matters of practice, 

– as economics, politics, tactics

• linguistically, the meaning extends easily 

– to encompass both 

• the science of information 

• the practice of information processing.
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Data - Information - Knowledge

• Data

– unprocessed facts and figures without any added 

interpretation or analysis. 

• {The price of crude oil is $80 per barrel.}

• Information

– data that has been interpreted so that it has meaning 

for the user. 

• {The price of crude oil has risen from $70 to $80 per 

barrel}

– [gives meaning to the data and so is said to be information to 

someone who tracks oil prices.]
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Data - Information - Knowledge

• Knowledge

– a combination of information, experience and 

insight that may benefit the individual or the 

organisation. 

• {When crude oil prices go up by $10 per barrel, it's 

likely that petrol prices will rise by 2p per litre.}

– [This is knowledge]

– [insight: the capacity to gain an accurate and deep 

understanding of someone or something; an accurate and deep 

understanding]
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Converting data into information

• Data becomes information when it is applied to 

some purpose and adds value for the recipient. 

– For example a set of raw sales figures is data. 

• For the Sales Manager tasked with solving a problem of poor sales 

in one region, or deciding the future focus of a sales drive, the raw 

data needs to be processed into a sales report. 

– It is the sales report that provides information.
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Converting data into information

• Collecting data is expensive 

– you need to be very clear about why you need it 

and how you plan to use it. 

– One of the main reasons that organisations collect 

data is to monitor and improve performance. 

• if you are to have the information you need for control 

and performance improvement, you need to:

– collect data on the indicators that really do affect performance

– collect data reliably and regularly

– be able to convert data into the information you need.
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Converting data into information

• To be useful, data must satisfy a number of 

conditions. It must be:

– relevant to the specific purpose

– complete

– accurate

– timely

• data that arrives after you have made your decision is of 

no value
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Converting data into information

– in the right format

• information can only be analysed using a spreadsheet if 

all the data can be entered into the computer system

– available at a suitable price

• the benefits of the data must merit the cost of collecting 

or buying it.

• The same criteria apply to information. 

– It is important

• to get the right information 

• to get the information right
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Converting information to knowledge

• Ultimately the tremendous amount of 

information that is generated is only useful if it 

can be applied to create knowledge within the 

organisation. 

• There is considerable blurring and confusion 

between the terms information and knowledge.

12
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Converting information to knowledge

• think of knowledge as being of two types:

– Formal, explicit or generally available knowledge. 

• This is knowledge that has been captured and used to 

develop policies and operating procedures for example.

– Instinctive, subconscious, tacit or hidden 

knowledge. 

• Within the organisation there are certain people who 

hold specific knowledge or have the 'know how'  

– {"I did something very similar to that last year and this 

happened….."}
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Converting information to knowledge

• Clearly, both types of knowledge are essential 

for the organisation.

• Information on its own will not create a 

knowledge-based organisation 

– but it is a key building block. 

• The right information fuels the development of 

intellectual capital 

– which in turns drives innovation and performance 

improvement.
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• A system can be broadly defined as an integrated set of 

elements that accomplish a defined objective. 

• People from different engineering disciplines have 

different perspectives of what a "system" is. 

• For example, 

– software  engineers often refer to an integrated set of  computer 

programs as  a "system"

– electrical engineers might refer to complex integrated circuits 

or an integrated set of electrical units as a "system" 

• As can be seen, "system" depends on one’s perspective, 

and the “integrated set of elements that accomplish a 

defined objective” is an appropriate definition.

Definition(s) of system

15

• A system is an assembly of parts where:

– The parts or components are connected together in an organized way.

– The parts or components are affected by being in the system (and are 

changed by leaving it).

– The assembly does something.

– The assembly has been identified by a person as being of special 

interest.

• Any arrangement which involves the handling, processing or 

manipulation of resources of whatever type can be represented 

as a system.

• Some definitions on online dictionaries

– http://en.wikipedia.org/wiki/System

– http://dictionary.reference.com/browse/systems

– http://www.businessdictionary.com/definition/system.html
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Definition(s) of system

• A system is defined as multiple parts working 

together for a common purpose or goal.

• Systems can be large and complex

– such as the air traffic control system or our global 

telecommunication network.  

• Small devices can also be considered as 

systems

– such as a pocket calculator, alarm clock, or 10-

speed bicycle.

Definition(s) of system
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• Systems have inputs, processes, and outputs.

• When feedback (direct or indirect) is involved,  

that component is also important to the 

operation of the system.  

• To explain all this, systems are usually 

explained using a model.  

• A model helps to illustrate the major elements 

and their relationship, as illustrated in the next 

slide

Definition(s) of system
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A systems model

19

• The ways that organizations 

– Store 

– Move 

– Organize 

– Process 

their information 
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Information Systems

• Components that implement information 

systems, 

– Hardware 

• physical tools: computer and network hardware, but also 

low-tech things like pens and paper 

– Software 

• (changeable) instructions for the hardware 

– People 

– Procedures 

• instructions for the people 

– Data/databases 

21

Information Technology 

22

Digital System

• Takes a set of discrete information (inputs) and 

discrete internal information (system state) and 

generates a set of discrete information (outputs).

System State

Discrete

Information

Processing

System

Discrete

Inputs Discrete

Outputs
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Synchronous or 

Asynchronous?

Inputs: 

Keyboard, 

mouse, modem, 

microphone

Outputs: CRT, 

LCD, modem, 

speakers

Memory

Control
unit

Datapath

Input/Output

CPU

A Digital Computer Example
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Signal

• An information variable represented by physical 
quantity.

• For digital systems, the variable takes on discrete 
values.   

• Two level, or binary values are the most prevalent 
values in digital systems.

• Binary values are represented abstractly by:

– digits 0 and 1

– words (symbols) False (F) and True (T)

– words (symbols) Low (L) and High (H) 

– and words On and Off.

• Binary values are represented by values or ranges of 
values of physical quantities
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A typical measurement system
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Transducers

• A “transducer” is a device that converts energy from one 

form to another.  

• In signal processing applications, the purpose of energy 

conversion is to transfer information, not to transform 

energy.  

• In physiological measurement systems, transducers may be 

– input transducers (or sensors) 
• they convert a non-electrical energy into an electrical signal.

• for example, a microphone.

– output transducers (or actuators) 
• they convert an electrical signal into a non-electrical energy.

• For example, a speaker.

26

27

Analogue signal

• The analogue signal 

– a continuous variable defined with infinite 
precision 

is converted to a discrete sequence of measured 
values which are represented digitally

• Information is lost in converting from analogue 
to digital, due to:

– inaccuracies in the measurement 

– uncertainty in timing 

– limits on the duration of the measurement 

• These effects are called quantisation errors
28

Digital signal

• The continuous analogue signal has to be held before 

it can be sampled

• Otherwise, the signal would be changing during the 

measurement

• Only after it has been held can the signal be measured, 

and the measurement converted to a digital value 

Signal Encoding: Analog-to Digital Conversion
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• ADC consists of four steps to digitize an analog 
signal:

1. Filtering

2. Sampling

3. Quantization

4. Binary encoding

 Before we sample, we have to filter the signal to 
limit the maximum frequency of the signal as it 
affects the sampling rate.

 Filtering should ensure that we do not distort the 
signal, ie remove high frequency components 
that affect the signal shape. 

Analog-to Digital Conversion

30
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Sampling

• The sampling results in a discrete set of digital 

numbers that represent measurements of the signal 

– usually taken at equal intervals of time

• Sampling takes place after the hold

– The hold circuit must be fast enough that the signal is not 

changing during the time the circuit is acquiring the signal 

value

• We don't know what we don't measure

• In the process of measuring the signal, some 

information is lost

• Analog signal is sampled every TS secs.

• Ts is referred to as the sampling interval. 

• fs = 1/Ts is called the sampling rate or sampling 
frequency.

• There are 3 sampling methods:

– Ideal - an impulse at each sampling instant

– Natural - a pulse of short width with varying amplitude

– Flattop - sample and hold, like natural but with single 
amplitude value

• The process is referred to as pulse amplitude 
modulation PAM and the outcome is a signal with 
analog (non integer) values

Sampling

33 34

Recovery of a sampled sine wave for different sampling rates

35 36
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37 38

39

According to the Nyquist theorem, the 

sampling rate must be

at least 2 times the highest frequency 

contained in the signal.

40

Sampling Theorem

Fs  2fm

Nyquist sampling rate for low-pass and bandpass signals

41

• Sampling results in a series of pulses of varying 
amplitude values ranging between two limits: a 
min and a max.

• The amplitude values are infinite between the two 
limits.

• We need to map the infinite amplitude values onto 
a finite set of known values.

• This is achieved by dividing the distance between 
min and max into L zones, each of height 

 = (max - min)/L

Quantization

42
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• The midpoint of each zone is assigned a 

value from 0 to L-1 (resulting in L values)

• Each sample falling in a zone is then 

approximated to the value of the midpoint. 

Quantization Levels

43

• Assume we have a voltage signal with 
amplitutes Vmin=-20V and Vmax=+20V.

• We want to use L=8 quantization levels.

• Zone width = (20 - -20)/8 = 5

• The 8 zones are: -20 to -15, -15 to -10, -10 
to -5, -5 to 0, 0 to +5, +5 to +10, +10 to 
+15, +15 to +20

• The midpoints are: -17.5, -12.5, -7.5, -2.5, 
2.5, 7.5, 12.5, 17.5

Quantization Zones

44

• Each zone is then assigned a binary code.

• The number of bits required to encode the zones, 
or the number of bits per sample as it is commonly 
referred to, is obtained as follows: 

nb = log2 L

• Given our example, nb = 3

• The 8 zone (or level) codes are therefore: 000, 
001, 010, 011, 100, 101, 110, and 111

• Assigning codes to zones:

– 000 will refer to zone -20 to -15

– 001 to zone -15 to -10, etc.

Assigning Codes to Zones

45

Quantization and encoding of a sampled signal

46

• When a signal is quantized, we introduce an error 

– the coded signal is an approximation of the actual 
amplitude value.

• The difference between actual and coded value 
(midpoint) is referred to as the quantization error.

• The more zones, the smaller 

– which results in smaller errors.

• BUT, the more zones the more bits required to 
encode the samples 

– higher bit rate

Quantization Error

47

Analog-to-digital Conversion

Example An 12-bit analog-to-digital converter (ADC) 

advertises an accuracy of ± the least significant bit (LSB).  

If the input range of the ADC is 0 to 10 volts, what is the 

accuracy of the ADC in analog volts?

Solution:

If the input range is 10 volts then the analog voltage represented by the LSB 

would be:

V
V

LSB    
max

.
2

10

2

10

4096
002412Nu bits

 volts

Hence the accuracy would be ± 0.0024 volts.

48
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Sampling related concepts

• Over/exact/under sampling

• Regular/irregular sampling

• Linear/Logarithmic sampling

• Aliasing

• Anti-aliasing filter

• Image

• Anti-image filter

50

Steps for digitization/reconstruction of a signal

• Band limiting (LPF)

• Sampling / Holding

• Quantization

• Coding

These are basic steps for 

A/D conversion 

• D/A converter

• Sampling / Holding

• Image rejection

These are basic steps for 

reconstructing a 

sampled digital signal 

51

Digital data: end product of A/D conversion and related 

concepts

• Bit: least digital information, binary 1 or 0

• Nibble: 4 bits

• Byte: 8 bits, 2 nibbles

• Word: 16 bits, 2 bytes, 4 nibbles

• Some jargon: 

– integer, signed integer, long integer, 2s 

complement, hexadecimal, octal, floating point, 

etc.

52

53

Data types

• Our first requirement is to find a way to represent information 

(data) in a form that is mutually comprehensible by human and 

machine.

– Ultimately, we need to develop schemes for representing all 

conceivable types of information - language, images, 

actions, etc.

– Specifically, the devices that make up a computer are 

switches that can be on or off, i.e. at high or low voltage. 

– Thus they naturally provide us with two symbols to work 

with: 

• we can call them on and off, or 0 and 1.

54

What kinds of data do we need to represent?

Numbers

signed, unsigned, integers, floating point, complex, rational, irrational, …

Text

characters, strings, …

Images

pixels, colors, shapes, …

Sound

Logical

true, false

Instructions

…

Data type: 

– representation and operations within the computer
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• Positive radix, positional number systems

• A number with radix r is represented by a 

string of digits:

An - 1An - 2 … A1A0 . A- 1 A- 2 … A- m + 1 A- m

in which 0 Ai < r and . is the radix point.

• The string of digits represents the power series:

( ) ( )(Number)r=  +
j = - m

j
j

i

i = 0
i rArA

(Integer Portion)  + (Fraction Portion)

i = n - 1 j = - 1

Number Systems – Representation

56

Decimal Numbers

• “decimal” means that we have ten digits to use in our 

representation 

– the symbols 0 through 9

• What is 3546?

– it is three thousands plus five hundreds plus four tens plus six 

ones.

– i.e. 3546 = 3×103 + 5×102 + 4×101 + 6×100

• How about negative numbers?

– we use two more symbols to distinguish positive and negative:

+ and -

57

Decimal Numbers

• “decimal” means that we have ten digits to use in our 

representation (the symbols 0 through 9)

• What is 3546?

– it is three thousands plus five hundreds plus four tens plus 

six ones.

– i.e. 3546 = 3.103 + 5.102 + 4.101 + 6.100

• How about negative numbers?

– we use two more symbols to distinguish positive and 

negative:

+ and -
58

Unsigned Binary Integers

3-bits 5-bits 8-bits

0 000 00000 00000000

1 001 00001 00000001

2 010 00010 00000010

3 011 00011 00000011

4 100 00100 00000100

Y = “abc” = a.22 + b.21 + c.20

N = number of bits

Range is:

0  i  < 2N - 1

(where the digits a, b, c can each take on the values of 0 or 1 only)

Problem:

• How do we represent 

negative numbers?

59

Signed Binary Integers 
-2s Complement representation-

• Transformation

– To transform a into -a, invert all 

bits in a and add 1 to the result

-16 10000

… …

-3 11101

-2 11110

-1 11111

0 00000

+1 00001

+2 00010

+3 00011

… …

+15 01111

Range is:

-2N-1 < i  < 2N-1 - 1

Advantages:

• Operations need not check the 

sign

• Only one representation for zero

• Efficient use of all the bits
60

Limitations of integer representations

• Most numbers are not integer!
– Even with integers, there are two other considerations:

• Range:
– The magnitude of the numbers we can represent is 

determined by how many bits we use:
• e.g. with 32 bits the largest number we can represent is about +/- 2 

billion, far too small for many purposes.

• Precision:
– The exactness with which we can specify a number:

• e.g. a 32 bit number gives us 31 bits of precision, or roughly 9 
figure precision in decimal repesentation.

• We need another data type!
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Real numbers

• Our decimal system handles non-integer real numbers 

by adding yet another symbol - the decimal point (.) to 

make a fixed point notation:

– e.g. 3456.78 = 3.103 + 4.102 + 5.101 + 6.100 + 7.10-1 + 8.10-2

• The floating point, or scientific, notation allows us to 

represent very large and very small numbers (integer or 

real), with as much or as little precision as needed:

– Unit of electric charge  e = 1.602 176 462 x 10-19 Coulomb

– Volume of universe = 1 x 1085 cm3

• the two components of these numbers are called the mantissa and the 

exponent

62

Real numbers in binary 

• We mimic the decimal floating point notation to create a 

“hybrid” binary floating point number:

– We first use a “binary point” to separate whole numbers from 

fractional numbers to make a fixed point notation:

• e.g. 00011001.110 = 1.24 + 1.103 + 1.101 + 1.2-1 + 1.2-2 => 25.75

(2-1 = 0.5 and 2-2 = 0.25, etc.)

– We then “float” the binary point:

• 00011001.110 => 1.1001110 x 24

mantissa = 1.1001110, exponent = 4

– Now we have to express this without the extra symbols ( x, 2, . )

• by convention, we divide the available bits into three fields:

sign, mantissa, exponent

63

IEEE-754 fp numbers - 1

s biased exp. fraction

1 8 bits 23 bits

N = (-1)s x 1.fraction x 2(biased exp. – 127)

32 bits:

• Sign: 1 bit

• Mantissa: 23 bits

– We “normalize” the mantissa by dropping the leading 1 and 
recording only its fractional part (why?) 

• Exponent: 8 bits

– In order to handle both +ve and -ve exponents, we add 127 
to the actual exponent to create a “biased exponent”:

• 2-127 => biased exponent = 0000 0000 (= 0)

• 20 => biased exponent = 0111 1111 (= 127)

• 2+127 => biased exponent = 1111 1110 (= 254)

64

IEEE-754 fp numbers - 2

• Example: Find the corresponding fp representation of 25.75

• 25.75 => 00011001.110 => 1.1001110 x 24

• sign bit = 0 (+ve)

• normalized mantissa (fraction) = 100 1110 0000 0000 0000 0000

• biased exponent = 4 + 127 = 131 => 1000 0011

• so 25.75 => 0 1000 0011 100 1110 0000 0000 0000 0000 => x41CE0000

• Values represented by convention:

– Infinity (+ and -): exponent = 255 (1111 1111) and fraction = 0

– NaN (not a number): exponent = 255 and fraction  0

– Zero (0): exponent = 0 and fraction = 0

• note: exponent = 0  =>  fraction is de-normalized, i.e no hidden 1

65

IEEE-754 fp numbers - 3

• Double precision (64 bit) floating point

1 11 bits 52 bits

N = (-1)s x 1.fraction x 2(biased exp. – 1023)

64 bits:

 Range & Precision:
 32 bit: 

 mantissa of 23 bits + 1 => approx. 7 digits decimal

 2+/-127 => approx. 10+/-38

 64 bit: 
 mantissa of 52 bits + 1 => approx. 15 digits decimal

 2+/-1023 => approx. 10+/-306

s biased exp. fraction

66

• Flexibility of representation

– Within constraints below, can assign any binary 
combination (called a code word) to any data as long as 
data is uniquely encoded.

• Information Types

– Numeric
• Must represent range of data needed

• Very desirable to represent data such that simple, straightforward 
computation for common arithmetic operations permitted

• Tight relation to binary numbers

– Non-numeric
• Greater flexibility since arithmetic operations not applied.

• Not tied to binary numbers

Binary Numbers and Binary Coding
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• Given n binary digits (called bits), a binary code is a 

mapping from a set of represented elements to a 

subset of the 2n binary numbers.

• Example: A

binary code

for the seven

colors of the

rainbow

• Code 100 is 

not used

Non-numeric Binary Codes

Binary Number

000

001

010

011

101

110

111

Color

Red

Orange

Yellow

Green

Blue

Indigo
Violet 

68

• Given M elements to be represented by a 
binary code, the minimum number of bits, n, 
needed, satisfies the following relationships:

2n > M > 2(n – 1) 

n =log2 M where x , called the ceiling
function, is the integer greater than or equal to x.

• Example: How many bits are required to 
represent decimal digits with a binary code?

– 4 bits are required (n =log2 9 = 4)

Number of Bits Required

69

Number of Elements Represented

• Given n digits in radix r, there are rn distinct 
elements that can be represented.

• But, you can represent m elements, m < rn

• Examples:

– You can represent 4 elements in radix r = 2 with n
= 2 digits: (00, 01, 10, 11).  

– You can represent 4 elements in radix r = 2 with n
= 4 digits: (0001, 0010, 0100, 1000).

70

Binary Coded Decimal (BCD)

• In the 8421 Binary Coded Decimal (BCD) 

representation each decimal digit is converted to its 4-

bit pure binary equivalent 

• This code is the simplest, most intuitive binary code 

for decimal digits and uses the same powers of 2 as a 

binary number, 

– but only encodes the first ten values from 0 to 9.

• For example: (57)dec  (?) bcd

(   5       7  ) dec

= (0101 0111)bcd

71

Error-Detection Codes

• Redundancy (e.g. extra information), in the form of 
extra bits, can be incorporated into binary code words 
to detect and correct errors.   

• A simple form of redundancy is parity, an extra bit 
appended onto the code word to make the number of 
1’s odd or even. 

– Parity can detect all single-bit errors and some multiple-bit 
errors.

• A code word has even parity if the number of 1’s in 
the code word is even.

• A code word has odd parity if the number of 1’s in the 
code word is odd.

72

4-Bit Parity Code Example

• Fill in the even and odd parity bits:

• The codeword "1111" has even parity and the 
codeword "1110" has odd parity.   Both can be used to 
represent 3-bit data.

Even Parity Odd Parity
Message - Parity Message - Parity

000 - 000 -
001 - 001 -
010 - 010 -
011 - 011 -
100 - 100 -
101 - 101 -
110 - 110 -
111 - 111 -
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ASCII Character Codes

• American Standard Code for Information Interchange

• This code is a popular code used to represent 
information sent as character-based data.   

• It uses 7- bits to represent
– 94 Graphic printing characters

– 34 Non-printing characters

• Some non-printing characters are used for text format 
– e.g. BS = Backspace, CR = carriage return

• Other non-printing characters are used for record 
marking and flow control 
– e.g. STX = start text areas, ETX = end text areas.

ASCII Properties

• ASCII has some interesting properties:

• Digits 0 to 9 span Hexadecimal values 3016 to 

3916

• Upper case A-Z span 4116 to 5A16

• Lower case a-z span 6116 to 7A16
– Lower to upper case translation (and vice versa) occurs by

flipping bit 6

• Delete (DEL) is all bits set,
– a carryover from when punched paper tape was used to 

store messages 

74

75

UNICODE

• UNICODE extends ASCII to 65,536 

universal  characters codes

– For encoding characters in world languages

– Available in many modern applications

– 2 byte (16-bit) code words

76

Warning: Conversion or Coding?

• Do NOT mix up "conversion of a decimal 

number to a binary number" with "coding a 

decimal number with a binary code".

• 1310 = 11012

–This is conversion

• 13  0001 0011BCD

–This is coding

77

Another use for bits: Logic

• Beyond numbers

– logical variables can be true or false, on or off, etc., and so 
are readily represented by the binary system.

– A logical variable A can take the values false = 0 or true = 1
only.

– The manipulation of logical variables is known as Boolean 
Algebra, and has its own set of operations 

• which are not to be confused with the arithmetical operations.

– Some basic operations: NOT, AND, OR, XOR

78

• Binary variables take on one of two values.

• Logical operators operate on binary values and 

binary variables.

• Basic logical operators are the logic functions

AND, OR and NOT.

• Logic gates implement logic functions.

• Boolean Algebra: a useful mathematical system 

for specifying and transforming logic functions.

• We study Boolean algebra as foundation for 

designing and analyzing digital systems!

Binary Logic and Gates
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• Recall that the two binary values have 
different names:

– True/False

– On/Off

– Yes/No

– 1/0

• We use 1 and 0 to denote the two values.

• Variable identifier examples:

– A, B, y, z, or X1 for now

– RESET, START_IT, or ADD1 later

Binary Variables

80

• The three basic logical operations are:

– AND 

– OR

– NOT

• AND is denoted by a dot (·)

• OR is denoted by a plus (+)

• NOT is denoted by an overbar ( ¯ ), a 

single quote mark (') after, or (~) before 

the variable

Logical Operations

81

• Examples:

– Y=A.B is read “Y is equal to A AND B.”

– z=x+y is read “z is equal to x OR y.”

– X=Ā is read “X is equal to NOT A.” 

 Note: The statement: 

1 + 1 = 2 (read “one plus one equals two”)

is not the same as

1 + 1 = 1 (read “1 or 1 equals 1”).

Notation Examples

82

 

 Operations are defined on the values 

"0" and "1" for each operator:

AND

0 · 0 = 0

0 · 1 = 0

1 · 0 = 0

1 · 1 = 1

OR

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

NOT

10 

01 

Operator Definitions

83

01

10

X

NOT

XZ

• Truth table - a tabular listing of the values of a 

function for all possible combinations of values on its 

arguments

• Example: Truth tables for the basic logic operations:

111

001

010

000

Z = X·YYX

AND OR

X Y Z = X+Y

0 0 0

0 1 1

1 0 1

1 1 1

Truth Tables

84

Transistor: Building Block of Computers

•Microprocessors contain millions of transistors

– Intel Pentium 4 (2000): 48 million

– IBM PowerPC 750FX (2002): 38 million

– IBM/Apple PowerPC G5 (2003): 58 million

•Logically, each transistor acts as a switch

•Combined to implement logic functions 

– AND, OR, NOT

•Combined to build higher-level structures

– Adder, multiplexer, decoder, register, …

•Combined to build processor



Copyright 2000 N. AYDIN. All rights 

reserved. 15

85

Building Functions from Logic Gates

•Combinational Logic Circuit

– output depends only on the current inputs

– stateless

•Sequential Logic Circuit

– output depends on the sequence of inputs (past and 

present)

– stores information (state) from past inputs

86

Basic Logic Gates

87

Waveform behavior in time

Timing diagram

X 0 0 1 1

Y 0 1 0 1

X ·Y(AND) 0 0 0 1

X + Y(OR) 0 1 1 1

(NOT) X 1 1 0 0

OR gate

X

Y
Z = X + Y

X

Y
Z = X ·Y

AND gate

X Z = X

NOT gate or
inverter
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• Boolean equations, truth tables and logic diagrams describe 
the same function!

• Truth tables are unique; expressions and logic diagrams are 
not. This gives flexibility in implementing functions.

X

Y F

Z

Logic Diagram

Equation

ZYX F +

Truth Table

11 1 1

11 1 0

11 0 1

11 0 0

00 1 1

00 1 0

10 0 1

00 0 0

X Y Z ZYX F +

Logic Diagrams and Expressions

89

Involution

Idempotence

Existence of complement

Existence of 0 and1

Commutative

Associative

Distributive

DeMorgan’s

2. X . 1 X=

4. X . 0 0=

6. X . X X=

8. 0=X . X

 An algebraic structure defined on a set of at least two elements, B, 

together with three binary operators (denoted +, · and ) that 

satisfies the following basic identities:

10. X + Y Y + X=

12. (X + Y) Z+ X + (Y Z)+=

14. X(Y + Z) XY XZ+=

16. X + Y X . Y=

11. XY YX=

13. (XY)Z X(YZ)=

15. X + YZ (X + Y) (X + Z)=

17. X . Y X + Y=

1. X + 0 X=

3. +X 1 1=

5. X + X X=

7. 1=X + X

9. X = X

Boolean Algebra

90

 The order of evaluation in a Boolean

expression is:
1. Parentheses
2. NOT
3. AND
4. OR

 Consequence: Parentheses appear

around OR expressions

 Example: F = A(B + C)(C + D)

Boolean Operator Precedence
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A + A·B = A (Absorption Theorem)

Proof Steps Justification (identity or theorem)

A + A·B

= A · 1 + A · B X = X · 1

= A · ( 1 + B)      X · Y + X · Z = X ·(Y + Z)(Distributive Law)

= A · 1 1 + X = 1

= A X · 1 = X

• Our primary reason for doing proofs is to learn:

– Careful and efficient use of the identities and theorems of 
Boolean algebra, and

– How to choose the appropriate identity or theorem to apply 
to make forward progress, irrespective of the application. 

Example 1: Boolean Algebraic Proof

92

AB + AC + BC = AB + AC (Consensus Theorem)

Proof Steps: Justification (identity or theorem) 

AB + AC + BC

= AB + AC + 1 · BC

= AB + AC + (A + A) · BC            

= AB + AC + ABC + ABC

= AB (1+C) + AC (1+B)

= AB · 1 + AC · 1

= AB + AC

Example 2: Boolean Algebraic Proofs

93

Proof Steps Justification (identity or theorem)

=

YXZ)YX( ++

)ZX(XZ)YX( +++ Y Y

Example 3: Boolean Algebraic Proofs

94

( ) Absorption xyxxxyxx ++

x yy LawssDeMorgan'xx + y x + y

( )( ) ninimizatioMyyyxyyyx ++ + x x

zyxzyzyx +++++ x x( ) ( ) ( ) ( ) ( )
+++ Consensuszyxzyzyx  x x

( ) tionSimplificayxyxyxyx +++ x x

Useful Theorems

95

yyyx  x+

( )( ) yyyx ++ x

Proof of Simplification

96

+ yx x y

yx  yx +

Proof of DeMorgan’s Laws
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x y z F1 F2 F3 F4 

0 0 0 0 0   

0 0 1 0 1   

0 1 0 0 0   

0 1 1 0 0   

1 0 0 0 1   

1 0 1 0 1   

1 1 0 1 1   

1 1 1 0 1   

 

zxyxF4 +

xyF1 z

xF2  yz+

xzyxzyxF3 + y+

Boolean Function Evaluation

1

0

0

1

1

1

0

0

0

1

0

1

1

1

0

0
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More than 2 Inputs?

•AND/OR can take any number of inputs.

AND = 1 if all inputs are 1.

OR = 0 if any input is 0.

Similar for NAND/NOR.

•Can implement with multiple two-input gates,

or with single CMOS circuit.

99

Functions and Functional Blocks

• The functions considered are those found to be very 

useful  in design 

• Corresponding to each of the functions is a 

combinational circuit implementation called a 

functional block.

• In the past, many functional blocks were implemented 

as SSI, MSI, and LSI circuits. 

• Today, they are often simply parts within a VLSI

circuit.

100

Rudimentary Logic Functions

• Functions of a single variable X

• Can be used on the

inputs to functional

blocks to implement

other than the block’s

intended function

Functions of One Variable

X F = 0 F = X F = F = 1

0

1

0

0

0

1

1

0

1

1

X

0

1

F 0

F 1

(a)

F 0

F 1

VCC or V DD

(b)

X F X

(c)

X F X

(d)

101

Multiple-bit Rudimentary Functions

• Multi-bit Examples:

• A wide line is used to represent

a bus which is a vector signal

• In (b) of the example, F = (F3, F2, F1, F0) is a bus.

• The bus can be split into individual bits as shown in (b)

• Sets of bits can be split from the bus as shown in (c)

for bits 2 and 1 of F. 

• The sets of bits need not be continuous as shown in (d) for bits 3, 1, and 0 

of F.

4 2:1 F(2:1)
2

F

(c)

F

(d)

4 3,1:0 F(3), F(1:0)
3

0

F3

1 F2

F1

A F0

(a)

A

0

1

A

1

2
3

4
F

0

(b)

A
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Enabling Function

• Enabling permits an input signal to pass through to an 

output

• Disabling blocks an input signal from passing through 

to an output, replacing it with a fixed value

• The value on the output when it is disable can be Hi-Z 

(as for three-state buffers and transmission gates), 0 , 

or 1

• When disabled, 0 output

• When disabled, 1 output

• Enabling applications?

X
F

EN

(a)

EN

X
F

(b)
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• Decoding - the conversion of an n-bit input 

code to an m-bit output code with

n m  2n such that each valid code word 

produces a unique output code

• Circuits that perform decoding are called 

decoders

• Here, functional blocks for decoding are

– called n-to-m line decoders, where m  2n, and

– generate 2n (or fewer) minterms for the n input 

variables

Decoding 

104

• 1-to-2-Line Decoder

• 2-to-4-Line Decoder

 Note that the 2-4-line

made up of  2 1-to-2-

line decoders and 4 AND gates.

Decoder Examples

A D 0 D 1

0 1 0

1 0 1

(a) (b)

D 1 = AA

D 0 = A

A 1

0

0

1

1

A 0

0

1

0

1

D 0

1

0

0

0

D 1

0

1

0

0

D 2

0

0

1

0

D 3

0

0

0

1

(a)

D 0 = A 1 A 0

D 1 = A 1 A 0

D 2 = A 1 A 0

D 3 = A 1 A 0

(b)

A 1

A 0
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Decoder Expansion - Example

• Result

106

• In general, attach m-enabling circuits to the outputs

• Truth table for the function

– Note use of X’s to denote both 0 and 1

– Combination containing two X’s represent four binary combinations

• Alternatively, can be viewed as distributing value of signal EN to 

1 of 4 outputs

• In this case, called a

demultiplexer

Decoder with Enable

EN

A1

A0

D0

D1

D2

D3

(b)

EN A1 A0 D0 D1 D2 D3

0

1

1

1

1

X

0

0

1

1

X

0

1

0

1

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

(a)
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Encoding

• Encoding - the opposite of decoding - the conversion of 

an m-bit input code to a n-bit output code with n m 

2n such that each valid code word produces a unique 

output code

• Circuits that perform encoding are called encoders

• An encoder has 2n (or fewer) input lines and n output 

lines which generate the binary code corresponding to 

the input values

• Typically, an encoder converts a code containing exactly 

one bit that is 1 to a binary code corresponding to the 

position in which the 1 appears.

108

• Selecting of data or information is a critical 
function in digital systems and computers

• Circuits that perform selecting have:

– A set of information inputs from which the 
selection is made

– A single output

– A set of control lines for making the selection

• Logic circuits that perform selecting are called 
multiplexers

• Selecting can also be done by three-state logic 
or transmission gates

Selecting
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Multiplexers

• A multiplexer selects information from an input 

line and directs the information to an output line

• A typical multiplexer has n control inputs (Sn - 1, 

… S0) called selection inputs, 2n information 

inputs (I2
n
- 1, … I0), and one output Y

• A multiplexer can be designed to have m

information inputs with m <2n as well as n

selection inputs 

110

2-to-1-Line Multiplexer

• Since 2 = 21, n = 1

• The single selection variable S has two values:

– S = 0 selects input I0

– S = 1 selects input I1

• The equation:

Y =     I0 + SI1

• The circuit:

S

S

I0

I1

Decoder
Enabling
Circuits

Y

111

Example: 4-to-1-line Multiplexer

• 2-to-22-line decoder

• 22  2 AND-OR

S1

Decoder

S0

Y

S1

Decoder

S0

Y

S1

Decoder

4 x 2 AND-OR
S0

Y

I2

I3

I1

I0
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Multiplexer Width Expansion

• Select “vectors of bits” instead of “bits”

• Use multiple copies of 2n  2 AND-OR in parallel

• Example:

4-to-1-line

quad multi-

plexer

113

Functional Blocks: Addition

• Binary addition used frequently

• Addition Development:

– Half-Adder (HA), a 2-input bit-wise addition 
functional block,

– Full-Adder (FA), a 3-input bit-wise addition 
functional block,

– Ripple Carry Adder, an iterative array to 
perform binary addition, and

– Carry-Look-Ahead Adder (CLA), a hierarchical 
structure to improve performance.

114

Functional Block: Half-Adder

• A 2-input, 1-bit width binary adder that performs the 

following computations:

• A half adder adds two bits to produce a two-bit sum

• The sum is expressed as a                                                    

sum bit , S and a carry bit, C

• The half adder can be specified

as a truth table for S and C  

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 0 0 1 0 1 1 0

X Y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0
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Implementations: Half-Adder

• The most common half                                                        

adder implementation is (e) 

• A NAND only implementation is:

YXC
YXS




)(C )YX( 

X
Y

C

S

X

Y

C

S

C)YX(S +
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Functional Block: Full-Adder

• A full adder is similar to a half adder, but includes a carry-

in bit from lower stages.   Like the half-adder, it computes 

a sum bit, S and a carry bit, C.

– For a carry-in (Z) of                                                            

0, it is the same as                                                              

the half-adder: 

– For a carry- in

(Z) of 1:            

Z 0 0 0 0

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 0 0 1 0 1 1 0

Z 1 1 1 1

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 1 1 0 1 0 1 1
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Logic Optimization: Full-Adder

• Full-Adder Truth Table:  

• Full-Adder K-Map:

X Y Z C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

X

Y

Z

0 1 3 2

4 5 7 6
1

1

1

1

S

X

Y

Z

0 1 3 2

4 5 7 6
1 11

1

C
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Equations: Full-Adder

• From the K-Map, we get:

• The S function is the three-bit XOR function (Odd 
Function):

• The Carry bit C is 1 if both X and Y are 1 (the sum is 2), or 
if the sum is 1 and a carry-in (Z) occurs.   Thus C can be 
re-written as:

• The term X·Y   is carry generate.

• The term XY  is carry propagate.

ZYZXYXC
ZYXZYXZYXZYXS

++
+++

ZYXS 

Z)YX(YXC +
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Implementation: Full Adder

• Full Adder Schematic  

• Here X, Y, and Z, and C
(from the previous pages)
are A, B, Ci and Co,
respectively. Also, 

G = generate and 

P = propagate.

• Note:   This is really a combination
of a 3-bit odd function (for S)) and
Carry logic (for Co):

(G = Generate) OR (P =Propagate AND Ci = Carry In)

Co  G + P · Ci

Ai Bi

Ci

Ci+1

Gi

Pi

Si
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4-bit Ripple-Carry Binary Adder

• A four-bit Ripple Carry Adder made from four 1-

bit Full Adders:    

B3 A 3

FA

B2 A 2

FA

B1

S3C4

C0

C3 C2 C1

S2 S1 S0

A 1

FA

B0 A 0

FA



Copyright 2000 N. AYDIN. All rights 

reserved. 21

121

2’s Complement Adder/Subtractor

• Subtraction can be done by addition of the 2's Complement.  

1. Complement each bit (1's Complement.)

2. Add 1 to the result.

• The circuit shown computes A + B and A – B:

• For S = 1, subtract,

the 2’s complement

of B is formed by using

XORs to form the 1’s

comp and adding the 1

applied to C0.

• For S = 0, add, B is

passed through

unchanged

FA FA FA FA

S

B3

C3

S2 S1 S0S3C4

C2 C1 C0

A 3 B2 A 2 B1 A 1 B0 A 0
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Combinational vs. Sequential

•Combinational Circuit

– always gives the same output for a given set of 

inputs

• ex: adder always generates sum and carry,

regardless of previous inputs

•Sequential Circuit

– stores information

– output depends on stored information (state) plus 

input

• so a given input might produce different outputs,

depending on the stored information
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• Combinatorial Logic

– Next state function

Next State = f(Inputs, State)

– Output function (Mealy)

Outputs = g(Inputs, State)

– Output function (Moore)

Outputs = h(State)

• Output function type depends on specification and affects the 

design significantly

Introduction to Sequential Circuits

Combina-

tional

Logic
Storage 

Elements

Inputs Outputs

State

Next

State
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R-S Latch: Simple Storage Element

•R is used to “reset” or “clear” the element – set it to zero.

•S is used to “set” the element – set it to one.

•If both R and S are one, out could be either zero or one.

– “quiescent” state -- holds its previous value

– note: if a is 1, b is 0, and vice versa

1

0

1

1

1

1

0

0

1

1

0

0

1

1
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R-S Latch Summary

•R = S = 1

– hold current value in latch

•R=1, S = 0

– set value to 1

•R = 0, S = 1

– set value to 0

•R = S = 0

– both outputs equal one

– final state determined by electrical properties of gates

– Don’t do it!
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D Latch

• Adding an inverter

to the S-R Latch,

gives the D Latch:

• Note that there are

no “indeterminate”

states! 

Q D Q(t+1) Comment

0 0 0 No change

0 1 1 Set Q

1 0 0 Clear Q

1 1 1 No Change

The graphic symbol for a

D Latch is:

C

D Q

Q

D
Q

C

Q
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Register

•A register stores a multi-bit value.
– We use a collection of D-latches, all controlled by a common WE.

– When WE=1, n-bit value D is written to register.

128

Representing Multi-bit Values

•Number bits from right (0) to left (n-1)

– just a convention -- could be left to right, but must be consistent

•Use brackets to denote range:

D[l:r] denotes bit l to bit r, from left to right

•May also see A<14:9>, 

especially in hardware block diagrams.

A = 0101001101010101

A[2:0] = 101A[14:9] = 101001

015
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Memory

•Now that we know how to store bits,

we can build a memory – a logical k × m array of 

stored bits.

•
•
•

k = 2n

locations

m bits

Address Space:

number of locations
(usually a power of 2)

Addressability:

number of bits per location
(e.g., byte-addressable)

130

22 x 3 Memory

address

decoder

word select word WE
address

write

enable

input bits

output bits
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More Memory Details

•This is a not the way actual memory is implemented.

– fewer transistors, much more dense, 

relies on electrical properties

•But the logical structure is very similar.

– address decoder

– word select line

– word write enable

•Two basic kinds  of RAM (Random Access Memory)

•Static RAM (SRAM)

– fast, maintains data as long as power applied

•Dynamic RAM (DRAM)

– slower but denser, bit storage decays – must be periodically refreshed

Also, non-volatile memories: ROM, PROM, flash, …
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State Machine

•Another type of sequential circuit

– Combines combinational logic with storage

– “Remembers” state, and changes output (and state) 

based on inputs and current state

State Machine

Combinational

Logic Circuit

Storage

Elements

Inputs Outputs
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Combinational vs. Sequential

•Two types of “combination” locks

4 1 8 4

30

15

5

1020

25

Combinational

Success depends only on

the values, not the order in 

which they are set.

Sequential

Success depends on

the sequence of values

(e.g, R-13, L-22, R-3).
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The Clock

•Frequently, a clock circuit triggers transition from

one state to the next.

•At the beginning of each clock cycle,

state machine makes a transition,

based on the current state and the external inputs.

“1”

“0”

timeOne

Cycle
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Implementing a Finite State Machine

•Combinational logic

– Determine outputs and next state.

•Storage elements

– Maintain state representation.

State Machine

Combinational

Logic Circuit

Storage

Elements

Inputs Outputs

Clock
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Storage: Master-Slave Flipflop

•A pair of gated D-latches, 

to isolate next state from current state.

During 1st phase (clock=1),

previously-computed state

becomes current state and is

sent to the logic circuit.

During 2nd phase (clock=0),

next state, computed by

logic circuit, is stored in

Latch A.
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Storage

•Each master-slave flipflop stores one state bit.

•The number of storage elements (flipflops) needed

is determined by the number of states

(and the representation of each state).

•Examples:

– Sequential lock

• Four states – two bits
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Finite State Machine

• A description of a system with the following components:

1. A finite number of states

2. A finite number of external inputs

3. A finite number of external outputs

4. An explicit specification of all state transitions

5. An explicit specification of what determines each

external output value

• Often described by a state diagram.

– Inputs trigger state transitions.

– Outputs are associated with each state (or with each transition).
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State of Sequential Lock

Our lock example has four different states,

labelled A-D:

A: The lock is not open,

and no relevant operations have been performed.

B: The lock is not open,

and the user has completed the R-13 operation.

C: The lock is not open,

and the user has completed R-13, followed by L-22.

D: The lock is open.
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State Diagram

•Shows states and 

actions that cause a transition between states.
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Sequential Circuit Design Procedure

• Specification

• Formulation 
– Obtain a state diagram or state table

• State Assignment 
– Assign binary codes to the states

• Flip-Flop Input Equation Determination 
– Select flip-flop types and derive flip-flop equations from next state entries in 

the table

• Output Equation Determination 
– Derive output equations from output entries in the table

• Optimization 
– Optimize the equations

• Technology Mapping 
– Find circuit from equations and map to flip-flops and gate technology

• Verification 
– Verify correctness of final design
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Example: Sequence Recognizer Procedure

• To develop a sequence recognizer state diagram:

– Begin in an initial state in which NONE of the initial portion of the 
sequence has occurred (typically “reset” state).

– Add a state that recognizes that the first symbol has occurred.

– Add states that recognize each successive symbol occurring.

– The final state represents the input sequence (possibly  less the 
final input value) occurence.

– Add state transition arcs which specify what happens when a 
symbol not in the proper sequence has occurred.

– Add other arcs on non-sequence inputs which transition to states 
that represent the input subsequence that has occurred.

• The last step is required because the circuit must recognize the input 
sequence regardless of where it occurs within the overall sequence 
applied since “reset.”.
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State Assignment

• Each of the m states must be assigned a 

unique code

• Minimum number of bits required is n such 

that

n ≥   log2 m

where   x is the smallest integer ≥ x

• There are useful state assignments that use 

more than the minimum number of bits

• There are 2n - m unused states
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Sequence Recognizer Example

• Example:  Recognize the sequence 1101

– Note that the sequence 1111101 contains 1101 and "11" is a proper 
sub-sequence of the sequence.   

• Thus, the sequential machine must remember that the first 
two one's have occurred as it receives another symbol. 

• Also, the sequence 1101101 contains 1101 as both an 
initial subsequence and a final subsequence with some 
overlap, i. e., 1101101 or 1101101. 

• And, the 1 in the middle, 1101101, is in both 
subsequences.

• The sequence 1101 must be recognized each time it occurs 
in the input sequence.
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Example: Recognize 1101

• Define states for the sequence to be recognized:

– assuming it starts with first symbol, 

– continues through each symbol in the sequence to be recognized, and 

– uses output 1 to mean the full sequence has occurred,

– with output 0 otherwise.

• Starting in the initial state (Arbitrarily named "A"):

– Add a state that                                     
recognizes the first "1."

– State "A" is the initial state, and state "B" is the state which represents 
the fact that the "first" one in the input subsequence has occurred.   

– The output symbol "0" means that the full recognized sequence has 
not yet occurred.

A B
1/0
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• After one more 1, we have:

– C is the state obtained                                                                            

when the input sequence                                                                          

has two "1"s.

• Finally, after 110 and a 1, we have:

– Transition arcs are used to denote the output function (Mealy Model)

– Output 1 on the arc from D means the sequence has been recognized

– To what state should the arc from state D go? Remember:  1101101 ?

– Note that D is the last state but the output 1 occurs for the input applied 

in D. This is the case when a Mealy model is assumed.

Example: Recognize 1101 ...

A B
1/0

C
1/0

A B
1/0

C
1/0 0/0

D
1/1

147

Example: Recognize 1101 ...

• Clearly the final 1 in the recognized sequence 1101 

is a sub-sequence of 1101.  It follows a 0 which is 

not a sub-sequence of 1101.  Thus it should 

represent the same state reached from the initial 

state after a first 1 is observed. We obtain:

1/1

DA B
1/0

C
1/0 0/0

A B1/0
C

1/0 0/0
D

1/1

23Ekim2k8
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Example: Recognize 1101 ...

• The state have the following abstract meanings:

– A:  No proper sub-sequence of the sequence has 

occurred.

– B:  The sub-sequence 1 has occurred.

– C:  The sub-sequence 11 has occurred.

– D:  The sub-sequence 110 has occurred.

– The 1/1 on the arc from D to B means that the last 1 has 

occurred and thus, the sequence is recognized.

1/1

A B
1/0

C
1/0

D
0/0
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Example: Recognize 1101 ...

• The other arcs are added to each state for 
inputs not yet listed.  Which arcs are 
missing?
– "0" arc from A

– "0" arc from B 

– "1" arc from C 

– "0" arc from D.

1/1

A B
1/0

C
1/0

D
0/0
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Example: Recognize 1101 ...

• State transition arcs must represent the fact that an 
input subsequence has occurred.   Thus we get:

• Note that the 1 arc from state C to state C implies 
that State C means two or more 1's have occurred.

C

1/1

A B
1/0 1/0

D
0/0

0/0

0/0 1/0

0/0
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Formulation: Find State Table 

• From the State Diagram, we can fill in the State Table.

• There are 4 states, one                                                      

input, and one output.                                                           

We will choose the form                                                  

with four rows, one for                                                          

each current state.

• From State A, the 0 and                                                      1 

input transitions have           

been filled in along with                                                     

the outputs.

1/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

0/0

Present 

State

Next State

x=0   x=1

Output

x=0   x=1

A

B

C

D

1/0

B 0

0/0

A 0
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Formulation: Find State Table

• From the state diagram, 

we complete the 
state table.

• What would the state diagram and state table look 
like for the Moore model?

1/00/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

State
Present Next State

x=0     x=1
Output

x=0   x=1
A A       B 0        0
B A       C 0        0

C D       C 0        0

D A       B 0        1
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Example: Moore Model for Sequence 1101

• For the Moore Model, outputs are associated with 

states.

• We need to add a state "E" with output value 1 for 

the final 1 in the recognized input sequence.

– This new state E, though similar to B, would generate an 

output of 1 and thus be different from B.

• The Moore model for a sequence recognizer usually 

has more states than the Mealy model.
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Example: Moore Model ...

• We mark outputs on                                                     

states for Moore model

• Arcs now show only                                                                   

state transitions

• Add a new state E to                                                    

produce the output 1

• Note that the new state,                                                  

E produces the same behavior                                     

in the future as state B. But it gives a different output at the 

present time. Thus these states do represent a different 

abstraction of the input history.

A/0 B/0 C/0 D/0

0

E/1

0

0

0

11

1

1
10
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Example: Moore Model ...

• The state table is shown                                                             

below

A/0 B/0 C/0 D/0

0

E/1

0

0

0

11

1

1
10

Present 

State

Next State

x=0     x=1

Output

y

A A  B 0

B A  C 0

C D  C 0

D A  E 0

E A  C 1
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• How may assignments of codes with a 
minimum number of bits?

– Two 

A = 0, B = 1 or A = 1, B = 0

• Does it make a difference?

– Only in variable inversion, so small, if any.

State Assignment – Example 1

Present 

State

Next State

x=0     x=1

Output

x=0   x=1

A A  B 0   0

B A  B 0   1
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• How may assignments of codes with a 
minimum number of bits?

4  3  2  1 = 24

• Does code assignment make a difference in 
cost?

State Assignment – Example 2

Present 

State

Next State

x=0     x=1

Output

x=0   x=1

A A       B 0        0

B A       C 0        0

C D       C 0        0

D A       B 0        1
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• Assignment  1: A = 0 0, B = 0 1, C = 1 0, D = 1 1

• The resulting coded state table:

State Assignment – Example 2 ...

Present 

State

Next State

x = 0 x = 1

Output

x = 0 x = 1

0 0 0 0 0 1 0 0

0 1 0 0 1 0 0 0

1 0 1 1 1 0 0 0

1 1 0 0 0 1 0 1
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• Assignment 2: A = 0 0, B = 0 1, C = 1 1, D = 1 0

• The resulting coded state table: 

State Assignment – Example 2 ...

Present 

State

Next State

x = 0 x = 1

Output

x = 0 x = 1

0 0 0 0 0 1 0 0

0 1 0 0 1 1 0 0

1 1 1 0 1 1 0 0

1 0 0 0 0 1 0 1
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Find Flip-Flop Input and Output Equations: 

Example 2 - Assignment 1

Y2

Y1

X

1

0

00

00

0

0

Y2

Y1

X

0

0

10

10

0

1

Y2

Y1

X

1

0

00

00

1

1

D1 D2
Z

 Assume D flip-flops

 Interchange the bottom two rows of the state 

table, to obtain K-maps for D1, D2, and Z:
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Optimization: Example 2: Assignment 1

• Performing two-level optimization:

D1 = Y1Y2 + XY1Y2

D2  = XY1Y2 + XY1Y2 + XY1Y2

Z   = XY1Y2                       Gate Input Cost = 22

Y2

Y1

X

1

0

00

00

0

0

Y2

Y1

X

0

0

10

10

0

1

Y2

Y1

X

1

0

00

00

1

1

D1 D2 Z
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Find Flip-Flop Input and Output Equations: 

Example 2 - Assignment 2

Y2

Y1

X

1

0

00

00

0

0

Y2

Y1

X

1

0

10

10

1

0

Y2

Y1

X

0

0

00

11

1

0

• Assume D flip-flops

• Obtain K-maps for D1, D2, and Z:

D1 D2
Z
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Optimization: Example 2: Assignment 2

• Performing two-level optimization:

D1 = Y1Y2 + XY2                    Gate Input Cost = 9

D2  = X           Select this state assignment for

Z   = XY1Y2    completion of the design

Y2

Y1

X

1

0

00

00

0

0

Y2

Y1

X

1

0

10

10

1

0

Y2

Y1

X

0

0

00

11

1

0

D1 D2
Z
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• Library:

– D Flip-flops

with Reset

(not inverted)

– NAND gates

with up to 4

inputs and

inverters

 Initial Circuit:

Map Technology

Clock

D

D

C
R

Y2

Z

C
R

Y1

X

Reset
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Mapped Circuit - Final Result

Clock

D

D

C

R

Y2

Z

C
R

Y1

X

Reset
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SCHEMATICS &

SIMULATION
LAYOUT MIXED 

SIGNAL

INTEGRATION

FINAL

SYNTHESIS & 

SIMULATION

STATIC 

TIMING 

ANALYSIS

LAYOUT,

PLACE & ROUTE
FINAL

MIXED 

SIGNAL

INTEGRATION

VHDL

Cadence

Leapfrog

Synopsys

Design 
Analyzer

VERILOG

Virtuoso

Virtuoso
Mixed 
Signal

Synopsys

DC shell
PEARL Silicon

Ensembl
e

GDSII
for

foundry

GDSII

Cadence

Spectre

ANALOGUE

DIGITAL

Typical mixed signal design flow

The chip manufacturing process
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A 12-inch (300 mm) wafer of Intel Core i7 (Courtesy Intel)
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SRAMAnalogue signal 

conditioning 

modules

uProcessor

ADC

Serial-parallel 

interface

Oscillator+DAC

DS-SS 

Encoder

Hall-effect 

sensor

RF

Clock 

divider

Typical post synthesis layout
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Picture of the fabricated chip

171 172

Testing board for the chip

Top side                            Bottom side


