
Copyright 2000 N. AYDIN. All rights

reserved. 1

Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

1 2

Course Details

• Course Code: COMP303

• Course Name: Computer Architecture

• Credit: 3

• Nature of the course: Lecture

• Course web page:

http://www.yildiz.edu.tr/~naydin/na_CAr.htm

• Instructors: Nizamettin AYDIN

Room: ….

Email: naydin@yildiz.edu.tr,

nizamettinaydin@gmail.com

3

Assesment

• Midterm : 30%

• Final : 40%

• Project : 10%

• Homework : 15%

• Attendance & participation : 05%

Rules of the Conduct

• No eating /drinking in class

– except water

• Cell phones must be kept outside of class or
switched-off during class

• No talking with your peers

• No late arrival or early leave to/from the
lecture

• No web surfing and/or unrelated use of
computers

– when computers are used in class or lab

4

Rules of the Conduct

• You are responsible for checking the class web

page often for announcements.

– http://www.yildiz.edu.tr/~naydin/na_CAr.htm

• Academic dishonesty and cheating

– will not be tolerated

– will be dealt with according to university rules and

regulations

• http://www.yok.gov.tr/content/view/475/

• Presenting any work that does not belong to you is also

considered academic dishonesty.

5 6

Recommended Texts

• Computer Organization and Design, David A.
Patterson and John L. Hennessy

• Computer Architecture: A Quantitative
Approach, John L. Hennessy, David A. Patterson

• Computer Organization and Architecture:
Designing for Performance, William Stallings

• Computer System Architecture, M. Morris Mano

• Logic and Computer Design Fundamentals, M.
Morris Mano, Charles Kime

• …

mailto:naydin@yildiz.edu.tr
mailto:naydin@yildiz.edu.tr
mailto:nizamettinaydin@gmail.com
http://www.yildiz.edu.tr/~naydin/na_I2B.htm
http://www.yok.gov.tr/content/view/475/

Copyright 2000 N. AYDIN. All rights

reserved. 2

Week’s Agenda

• What is computer architecture?

• Why study computer architecture?

• HW/SW abstractions

• Manufacturing of a chip

• Course Info

• …

7

Objectives

• Know the difference between computer

organization and computer architecture.

• Understand units of measure common to

computer systems.

• Appreciate the evolution of computers.

• Understand the computer as a layered system.

• Be able to explain the von Neumann architecture

and the function of basic computer components.

8

Why study Computer Architecture?

• Design better programs, including system software such as

– compilers, operating systems, and device drivers.

• Optimize program behaviour.

• Parallelism

– Primary source of performance is now parallelism as opposed
to the speed of transistors, clock frequency, instruction level
parallelism or pipelining

• Programmer has to be aware of the parallel architecture

• Evaluate (benchmark) computer system performance.

– Employers are looking for people who know ‘how’ things work

• Understand time, space, and price trade-offs.

• Required Class

9

What is Computer Architecture?

• Fred Brooks (IBM)

– “Computer architecture, like other architecture, is the

art of determining the needs of the user of a structure

and then designing to meet those needs as effectively

as possible within economic and technological

constraints.”

• Source: Wikipedia

10

Computer Organization vs Computer Architecture

• There is no clear distinction between matters

related to computer organization and matters

relevant to computer architecture.

• Principle of Equivalence of Hardware and

Software:

– Anything that can be done with software can also be

done with hardware, and anything that can be done

with hardware can also be done with software,

• assuming speed is not a concern.

11

Computer Organization vs Computer Architecture

• Computer organization

– Encompasses all physical aspects of computer systems.

• Control signals, interfaces, memory technology.

– e.g. Is there a hardware multiply unit or is it done by repeated addition?

– How does a computer work?

• Computer architecture

– Logical aspects of system implementation as seen by the

programmer.

• Instruction set, number of bits used for data representation, I/O

mechanisms, addressing techniques.

– e.g. Is there a multiply instruction?

– How do I design a computer?

12

Copyright 2000 N. AYDIN. All rights

reserved. 3

Computer Organization vs Computer Architecture

• All Intel x86 family share the same basic

architecture

• The IBM System/370 family share the same basic

architecture

• This gives code compatibility

– at least backwards

• Organization differs between different versions

13

Computer Components - Structure & Function

• Structure is the way in which components relate to
each other

– Processor

– Memory

– IO

– System Interconnection

• Function is the operation of individual components
as part of the structure

– Data processing

– Data movement

– Data storage

– Control

14

An example system

• Consider this advertisement:

• What does it all mean??

15

An example system

• Measures of capacity and speed:

• Whether a metric refers to a power of ten or a

power of two typically depends upon what is

being measured.

16

Decimal Binary

Kilo (K) = 1 thousand = 103 210

Mega (M) = 1 million = 106 220

Giga (G) = 1 billion = 109 230

Tera (T) = 1 trillion = 1012 240

Peta (P) = 1 quadrillion = 1015 250

An example system

• Hertz = clock cycles per second (frequency)

– 1MHz = 1,000,000 Hz

– Processor speeds are measured in MHz or GHz.

• Byte = a unit of storage

– 1KB = 210 = 1024 Bytes

– 1MB = 220 = 1,048,576 Bytes

– Main memory (RAM) is measured in MB

– Disk storage is measured in GB for small systems,

TB for large systems.

17

An example system

• Measures of time and space:

• Millisecond = 1 thousandth of a second

– Hard disk drive access times are often 10 to 20 milliseconds.

• Nanosecond = 1 billionth of a second

– Main memory access times are often 50 to 70 nanoseconds.

• Micron (micrometer) = 1 millionth of a meter

– Circuits on computer chips are measured in microns.

18

Milli (m) = 1 thousandth = 10 -3

Micro () = 1 millionth = 10 -6

Nano (n) = 1 billionth = 10 -9

Pico (p) = 1 trillionth = 10 -12

Femto(f) = 1 quadrillionth = 10 -15

Copyright 2000 N. AYDIN. All rights

reserved. 4

An example system

• We note that cycle time is the reciprocal of

clock frequency:

T = 1/f

• A bus operating at 133 MHz has a cycle time

of 7.52 nanoseconds:

T = 1/f = 1/(133×106) = 0.00751879×10-6

T = 7.51879×10-9 second/cycle

T = 7.52 nanosecond/cycle

19

Now back to the advertisement ...

An example system

20

A system bus moves data within the

computer. The faster the bus the better.

This one runs at 133MHz.

The microprocessor is the “brain” of

the system. It executes program

instructions. This one is a Pentium III

(Intel) running at 667MHz.

An example system

• Computers with large main memory capacity

can run larger programs with greater speed

than computers having small memories.

• RAM is an acronym for random access

memory.

– Random access means that memory contents can

be accessed directly if you know its location.

• Cache is a type of temporary memory that can

be accessed faster than RAM.

21

An example system

22

… and two levels of cache memory, the level 1 (L1)

cache is smaller and (probably) faster than the L2 cache.

Note that these cache sizes are measured in KB.

This system has 64MB of (fast)

synchronous dynamic RAM

(SDRAM) . . .

An example system

23

This one can store 30GB. 7200 RPM is the rotational

speed of the disk. Generally, the faster a disk rotates,

the faster it can deliver data to RAM. (There are many

other factors involved.)

Hard disk capacity determines

the amount of data and size of

programs you can store.

An example system

24

A CD-ROM can store about 650MB of data, making

it an ideal medium for distribution of commercial

software packages. 48x describes its speed.

EIDE stands for enhanced integrated drive electronics,

which describes how the hard disk interfaces with (or

connects to) other system components.

Copyright 2000 N. AYDIN. All rights

reserved. 5

An example system

25

This system has

four ports.

Ports allow movement of

data between a system and its

external devices.

System buses can be augmented by

dedicated I/O buses. PCI, peripheral

component interface, is one such bus.

This system has two PCI

devices: a sound card,

and a modem for

connecting to the

Internet.

An example system

• Serial ports send data as a series of pulses

along one or two data lines.

• Parallel ports send data as a single pulse along

at least eight data lines.

• USB (universal serial bus) is an intelligent

serial interface that is self-configuring.

– It supports “plug and play.”

26

An example system

27

The number of times per second that the image on

the monitor is repainted is its refresh rate. The dot

pitch of a monitor tells us how clear the image is.

This monitor has a dot pitch of

0.28mm and a refresh rate of 85Hz.

The graphics card contains memory and

programs that support the monitor.

An example system

• Throughout the remainder of this course you

will see how these components work and how

they interact with software to make complete

computer systems.

• The above statement raises two important

questions:

– What assurance do we have that computer

components will operate as we expect?

– And what assurance do we have that computer

components will operate together?

28

Standards Organizations

• There are many organizations that set computer

hardware standards

– to include the interoperability of computer

components.

• Throughout this course, and in your career, you

will encounter many of them.

• Some of the most important standards-setting

groups are . . .

29

Standards Organizations

• The Institute of Electrical and Electronic

Engineers (IEEE)

– Promotes the interests of the worldwide electrical

engineering community.

– Establishes standards for

• computer components,

• data representation,

• signaling protocols,

• ...

30

Copyright 2000 N. AYDIN. All rights

reserved. 6

Standards Organizations

• The International Telecommunications Union
(ITU)

– Concerns itself with the interoperability of
telecommunications systems, including data
communications and telephony.

• National groups establish standards within their
respective countries:

– The American National Standards Institute (ANSI)

– The British Standards Institution (BSI)

– Türk Standartları Enstitüsü

– …

31

Standards Organizations

• The International Organization for

Standardization (ISO)

– establishes worldwide standards for everything

from screw threads to photographic film.

– is influential in formulating standards for computer

hardware and software, including their methods of

manufacture.

• Note: ISO is not an acronym. ISO comes from the

Greek, isos, meaning equal.

32

Historical Development

• To fully appreciate the computers of today, it is

helpful to understand how things got the way

they are.

• The evolution of computing machinery has

taken place over several centuries.

• In modern times computer evolution is usually

classified into four generations according to the

salient technology of the era.

– We note that many of the following dates are approximate.

33

Historical Development

• Generation Zero

– Mechanical Calculating Machines (1642 - 1945)

• Calculating Clock - Wilhelm Schickard (1592 - 1635).

• Pascaline - Blaise Pascal (1623 - 1662).

• Difference Engine - Charles Babbage (1791 - 1871),

also designed but never built the Analytical Engine.

• Punched card tabulating machines - Herman Hollerith

(1860 - 1929).

– Hollerith cards were commonly used for computer

input well into the 1970s.

34

Historical Development

• Mechanical Brains

– Abacus

– Slide Rule

– Difference Engine

– Mechanical Calculators

– Differential Analyzer

• http://web.mit.edu/mindell/www/analyzer.htm

35

Historical Development

• The First Generation

– Vacuum Tube Computers (1945 - 1953)

Atanasoff Berry Computer (1937 - 1938)

solved systems of linear equations.

John Atanasoff and Clifford Berry of Iowa

State University.

36

Copyright 2000 N. AYDIN. All rights

reserved. 7

Historical Development

• The First Generation

– Vacuum Tube Computers (1945 - 1953)

– The first general-purpose computer.

• Electronic

Numerical

Integrator and

Computer (ENIAC)

– John Mauchly and J.

Presper Eckert

– University of

Pennsylvania, 1946

37

Historical Development

• The First Generation

– Vacuum Tube Computers (1945 - 1953)

– The first mass-produced computer.

• IBM 650 (1955)

• Phased out in 1969.

38

Historical Development

• The Second Generation

– Transistorized Computers (1954 - 1965)
• IBM 7094 (scientific)

and 1401 (business)

• Digital Equipment

Corporation (DEC)

PDP-1

• Univac 1100

• . . . and many others.

39

Historical Development

• The Third Generation

– Integrated Circuit Computers (1965 - 1980)

• IBM 360

• DEC PDP-8 and

PDP-11

• Cray-1

supercomputer

• . . . and many

others.

40

Historical Development

• The Fourth Generation

– VLSI Computers (1980 - ????)

– Very large scale integrated circuits (VLSI) have

more than 10,000 components per chip.

– Enabled the creation of microprocessors.

– The first was the 4-bit Intel 4004.

– Later versions, such as the 8080, 8086, and 8088

spawned the idea of “personal computing.”

41

Historical Development

• Moore’s Law (1965)

– Gordon Moore, Intel founder

– “The density of transistors in an integrated circuit

will double every year.”

• Contemporary version:

– “The density of silicon chips doubles every 18

months.”

– But this “law” cannot hold forever ...

42

Copyright 2000 N. AYDIN. All rights

reserved. 8

Historical Development

• Rock’s Law

– Arthur Rock, Intel financier

– “The cost of capital equipment to build

semiconductors will double every four years.”

– In 1968, a new chip plant cost about $12,000.

• At the time, $12,000 would buy a nice home in the

suburbs.

• An executive earning $12,000 per year was “making a

very comfortable living.”

43

Historical Development

• Rock’s Law

– In 2003, a chip plants under construction will cost

over $2.5 billion.

• $2.5 billion is more than the gross domestic product of

some small countries, including Belize, Bhutan, and the

Republic of Sierra Leone.

– For Moore’s Law to hold, Rock’s Law must fall, or

vice versa.

• But no one can say which will give out first.

44

What is Computer Architecture?

Computer Architecture

=

Instruction Set Architecture

+

Machine Organization

45

Instruction Set Architecture (subset of Comp Arch.)

• ... the attributes of a [computing] system as seen by
the programmer, i.e. the conceptual structure and
functional behavior, as distinct from the organization
of the data flows and controls the logic design, and
the physical implementation.

-Amdahl, Blaaw, and Brooks, 1964

– Organization of Programmable Storage
• Data Types & Data Structures: Encodings & Representations

– Instruction Set

– Instruction Formats

– Modes of Addressing and Accessing Data Items and
Instructions

– Exceptional Conditions

46

The Instruction Set: a Critical Interface

47

instruction set

software

hardware

What is Computer Architecture?

• Coordination of many levels of abstraction

• under a rapidly changing set of forces

• Design, Measurement, and Evaluation

48

I/O systemInstr. Set Proc.

Compiler

Operating
System

Application

Digital Design

Circuit Design

Instruction Set
Architecture

Firmware

Datapath & Control

Layout

Copyright 2000 N. AYDIN. All rights

reserved. 9

Forces on Computer Architecture

49

Computer

Architecture

Technology
Programming

Languages

Operating

Systems
History

Applications

The Computer Level Hierarchy

• Computers consist of many things besides chips.

• Before a computer can do anything worthwhile, it

must also use software.

• Writing complex programs requires a “divide and

conquer” approach, where each program module

solves a smaller problem.

• Complex computer systems employ a similar

technique through a series of virtual machine

layers.

50

The Computer Level Hierarchy

• Each virtual machine layer
is an abstraction of the
level below it.

• The machines at each level
execute their own
particular instructions,
calling upon machines at
lower levels to perform
tasks as required.

• Computer circuits
ultimately carry out the
work.

51

The Computer Level Hierarchy

• Level 6

– The User Level

• Program execution and user

interface level.

• The level with which we are

most familiar.

• Level 5

– High-Level Language

Level

• The level with which we

interact when we write

programs in languages such

as C, Pascal, Lisp, and Java.

52

The Computer Level Hierarchy

• Level 4
– Assembly Language Level

• Acts upon assembly
language produced from
Level 5, as well as
instructions programmed
directly at this level.

• Level 3
– System Software Level

• Controls executing processes
on the system.

• Protects system resources.

• Assembly language
instructions often pass
through Level 3 without
modification.

53

The Computer Level Hierarchy

• Level 2

– Machine Level

– Also known as the
Instruction Set
Architecture (ISA) Level.

• Consists of instructions
that are particular to the
architecture of the
machine.

• Programs written in
machine language need no
compilers, interpreters, or
assemblers.

54

Copyright 2000 N. AYDIN. All rights

reserved. 10

The Computer Level Hierarchy

• Level 1

– Control Level

• A control unit decodes and

executes instructions and moves

data through the system.

• Control units can be

microprogrammed or hardwired.

• A microprogram is a program

written in a low-level language

that is implemented by the

hardware.

• Hardwired control units consist

of hardware that directly

executes machine instructions.

55

The Computer Level Hierarchy

• Level 0

– Digital Logic Level

• This level is where we

find digital circuits (the

chips).

• Digital circuits consist

of gates and wires.

• These components

implement the

mathematical logic of all

other levels.

56

Two Recurring Themes

• Abstraction
– Productivity enhancer – don’t need to worry about

details…
• Can drive a car without knowing how

the internal combustion engine works.

• …until something goes wrong!
– Where’s the dipstick? What’s a spark plug?

– Important to understand the components and
how they work together.

• Hardware vs. Software
– It’s not either/or – both are components of a computer

system.

– Even if you specialize in one, you should understand
capabilities and limitations of both.

57

Universal Computing Device

• All computers, given enough time and memory,

are capable of computing exactly the same things.

58

= =

PDA
Workstation

Supercomputer

Turing Machine

• Mathematical model of a device that can perform

any computation – Alan Turing (1937)

– ability to read/write symbols on an infinite “tape”

– state transitions, based on current state and symbol

• Every computation can be performed by some

Turing machine. (Turing’s thesis)

59

Tadda,b a+b

Turing machine that adds

Tmul
a,b ab

Turing machine that multiplies

Universal Turing Machine

• A machine that can implement all Turing machines

– this is also a Turing machine!

– inputs:
• data, plus a description of computation (other TMs)

• U is programmable – so is a computer!
– instructions are part of the input data

– a computer can emulate a Universal Turing Machine

• A computer is a universal computing device.

60

U
a,b,c c(a+b)

Universal Turing Machine

Tadd, Tmul

Copyright 2000 N. AYDIN. All rights

reserved. 11

From Theory to Practice

• In theory, computer can compute anything that’s
possible to compute

– given enough memory and time

• In practice, solving problems involves
computing under constraints.

– time

• weather forecast, next frame of animation, ...

– cost

• cell phone, automotive engine controller, ...

– power

• cell phone, handheld video game, ...

61

Transformations Between Layers

62

Problems

Language

Instruction Set Architecture

Microarchitecture

Circuits

Devices

Algorithms

How do we solve a problem using a computer?

A systematic sequence of transformations between layers of

abstraction.

63

Problem

Algorithm

Program

Instr Set

Architecture

Software Design:

choose algorithms and data structures

Programming:

use language to express design

Compiling/Interpreting:

convert language to

machine instructions

Deeper and Deeper…

64

Instr Set

Architecture

Microarch

Circuits

Processor Design:

choose structures to implement ISA

Logic/Circuit Design:

gates and low-level circuits to

implement components

Devices

Process Engineering & Fabrication:

develop and manufacture

lowest-level components

Descriptions of Each Level

• Problem Statement
– stated using "natural language"

– may be ambiguous, imprecise

• Algorithm
– step-by-step procedure, guaranteed to finish

– definiteness, effective computability, finiteness

• Program
– express the algorithm using a computer language

– high-level language, low-level language

• Instruction Set Architecture (ISA)
– specifies the set of instructions the computer can perform

– data types, addressing mode

65

Descriptions of Each Level

• Microarchitecture

– detailed organization of a processor implementation

– different implementations of a single ISA

• Logic Circuits

– combine basic operations to realize microarchitecture

– many different ways to implement a single function
(e.g., addition)

• Devices

– properties of materials, manufacturability

66

Copyright 2000 N. AYDIN. All rights

reserved. 12

Many Choices at Each Level

67

Solve a system of partial differential equations

Gaussian

elimination

Jacobi

iteration
Red-black SOR Multigrid

FORTRAN C C++ Java

Intel x86PowerPC Atmel AVR

Centrino Pentium 4 Xeon

Ripple-carry adder Carry-lookahead adder

CMOS Bipolar GaAs

Tradeoffs:

cost

performance

power

(etc.)

Course Outline - What is Next?

• How to represent information

• The building blocks of computers: logic gates

• The basic algorithm: the von Neumann model

• Example 1: VVM (Visible Virtual Machine)

• Example 2: The MIPS structure and language

• Programming the machine: assembly language

• A higher-level language: C

68

