Biomedical Instrumentation

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr naydin@ieee.org http://www.yildiz.edu.tr/~naydin Electrical Safety

٦

Figure 14.11 Microshock leakage-current pathways. Assume 100 μ A of leakage current from the power line to the instrument chassis, (a) Intact ground, and 99.8 μ A flows through the ground, (b) Broken ground, and 100 μ A flows through the heart, (c) Broken ground, and 100 μ A flows through the heart in the opposite direction.

Electric Appliance	Chassis Leakage, µA	Patient-Lead Leakage, μA
Appliances not intended to contact patients	100	Not applicable
Appliances not intended to contact patients and single fault	500	Not applicable
Appliances with nonisolated patient leads	100	10
Appliances with <i>nonisolated</i> leads and single fault	300	100
Appliances with isolated patient leads	100	10
Appliances with isolated leads and single fault	300	50

Г

