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Chemical Biosensors

1
Table 10.1 Critical-Care Analytes and Their Normal Ranges in Blood
Blood Gases and Related
Parameters Electrolytes Metabolites
Po, 80-104 mm Hg Na®  135-155mmol/l  Glucose 70-110 mg/
100 ml
Pco, 33-48 mm Hg K* 3.6-5.5 mmol/l Lactate 3-7mg/
100 ml
pH 7.31-7.45 Ca® 1.14-1.31mmol/l Creatinine 0.9-1.4 mg/
100 ml
Hematocrit 40-54% CI" 98-109 mmol/l Urea 8-26 mg/
100 ml
Total 13-18 /100 ml
hemoglobin

O,-saturation

95-100%

Source: M. E. Collison and M. E. Meyerhoff, “Chemical sensors for bedside monitoring of
critically ill patients,” Anal. Chem., 1990, 62, 425A-437A.
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Figure 10.1 The oxyhemoglobin dissociation curve, sh owing the effect of pH
and temperature on the relationship between  SO2 and PO2.

Table 102 Examples of Arterial Blood Gases in Different Clinical Situations
Example  PCO,.mm g o 0, mmg interprotation Ukely Causes Therapy
1 043 740500 Normal blood gas None
2 4413 73700 Normal blood gas while
leep
3 z 757 106 Hyperventilation Ansicty None
4 6 710 8 Central Mechanical ventilation:
depression: blackage relieve the cause
of uppe:
s 8 721 £ Hypoventilation and Pocumor
ypore mia obsiru
asthms
6 6l 699 29 Combined respiratary Birth asphysia Oxygen: mechanical
and metabolic acidosis near-drawning ventilation; buffers?
and hyposemia
7 @ 737 106 ic Paticnt haschronic lung  Treal chronic di
discasc and is on oxygen  no additional therapy
may be necessary
8 2 731 106 acidosis with Treat the
respiratory compensation  dehydration
Nickerson and F. Monaco. “ in]. G. Webster ed.
Instrumentation. New York: Wilcy. 1955, pp. 564-569.
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Figure 10.2 pH electrode (From R. Hicks, J. R. Schen  ken, and M. A. Steinrauf,
Laboratory Instrumentation. Hagerstown, MD: Harper & Row, 1974. Used with
permission of C. A. McWhorter.)
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Figure 10.3 PCO2 electrode (From R. Hicks, J. R. Schenken, and M . A.

Steinrauf, Laboratory Instrumentation. Hangerstown, MD: Harper & Row,
1974. Used with permission of C. A. McWhorter.)
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Figure 10.4 PO2 electrode (From R. Hicks, J. R. Schenken, and M. A.
Steinrauf, Laboratory Instrumentation. Hangerstown, MD: Harper & Row,
1974. Used with permission of C. A. McWhorter.)
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Figure 10.5 (a) Current plotted against polarizing vo  ltage for a typical PO2
electrode for the percents O2 shown. (b) Electrode operation with a
polarizing voltage of 0.68 V gives a linear relation  ship between current
output and percent O2.
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Figure E10.3 From a —15 V power supply use a 14300 Q and 700 Q resistor
voltage divider to yield —0.7 V to bias the Pt elec  trode. Feed the Ag/AgCI
electrode output into an FET current-to-voltage con  verter with a feedback
resistor = V/I =10 V/250 nA = 40 MQ.

A() = WLao(1)Co + a:(2)C]
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Figure 10.6  Absorptivities (extinction coefficients) in L/(mmol @m) of the
four most common hemoglobin species at the waveleng ths of interest in
pulse oximetry. (Courtesy of Susan Manson, Biox/Ohm  eda, Boulder, CO.)
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Figure 10.7 The oximeter catheter system measures ox  ygen saturation in
vivo, using red and infrared light emitting diodes (LFDs) and a photosensor.
The red and infrared LEDs are alternately pulsed in  order to use a single
photosensor.
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Figure 10.9 A reversible fiber-optic chemical sensor measures light
scattered from phenol red indicator dye to yield pH . [From J. I. Peterson,
“Optical sensors,” in J. G. Webster (ed.), Encycloped ia of Medical Devices
and Instrumentation. New York: Wiley, 1988, pp. 212  1-2133. Used by

Figure 10.8 The catheter used with the Abbott Optica  th Oximetry System
transmits light to the blood through a transmitting optical fiber and returns
the reflected light through a receiving optical fib er. The catheter is optically

connected to the oximetry processor through the opt ical module. (From permission.]
Abbott Critical Care Systems. Used by permission.)
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Figure 10.10  The plot of absorbance against waveleng th of phenol red (base (From J. I. Peterson, S. R. Goldstein, and R. V. Fi  tzgerald, “Fiber-optic pH
form) increases with pH for green light but is cons tant for red light. probe for physiological use.”  Anal. Chem., 1980, 52, 864-869. Used by
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Figure 10.12 A single-fiber intravascular blood-gas sensor excites 300 400 500 600
fluorescent dye at one wavelength and detects emiss  ion at a different Wavelength, nm
wavelength. The following modifications are made to  the sensor tip: Figure 10.13  This pH-sensitive dye is excited at 410  and 460 nm and
pH: Chemistry—pH-sensitive dye bound to hydrophilic matrix. PCO2: fluoresces at 520 nm. (A) The excitation spectrum o f the acidic form of the dye;
Chemistry—Bicarbonate buffer containing pH-sensitive dye with silicone. (B) the excitation spectrum of the basic form of th e dye; (C) the emission
PO2: Chemistry—Oxygen-sensitive dye in silicone. (Fro ~ m J. L. Gehrich, D.W. spectrum of the acidic and basic forms of the dye. (From J. 1. Gehrich, D. W.
Libbers, N. Optiz, D. R. Hansmann, W. E. Miller, J. K. Tusa, and M. Yafuso, Lubbers, N. Opitz, D. R. Hansmann, W. W. Miller, J. K. Tusa, and M. Yafuso,
“Optical fluorescence and its application to an intr avascular blood gas “Optical fluorescence and its application to an intr avascular blood gas
monitoring system,”  IEEE Trans. Biomed. Eng., 1986, BME-33, 117-132. Used monitoring system,”  |EEE Trans. Biomed. Eng., 1986, BME-33, 117-132. Used
by permission.) by permission.)
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Figure 10.14 The emission spectrum of oxygen-sensiti  ve dye can be
separated from the excitation spectrum by a filter. (From J. L. Gehrich, D. W.
Liibbers, N. Opitz, D. R. Hansmann, W. W. Miller, J. K. Tusa, and M. Yafuso,
“Optical fluorescence and its application to an intr avascular blood gas
monitoring system,”  |EEE Trans. Biomed. Eng., 1986, BME-33, 117-132. Used
by permission.)
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Figure 10.15 In a fiber-optic oxygen sensor, irradia  tion of dyes causes
fluorescence that decreases with  PO2. [From R. Kocache, “Oxygen
analyzers.” in J. G. Webster (ed.), Encyclopedia of M edical Devices and
Instrumentation. New York: Wiley, 1988, pp. 2154-21 61. Used by permission.]
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Figure 10.16 An intravascular blood-gas probe measur e pH, PCO2, and PO2
by means of single fiber-optic fluorescent sensors. (From J. L. Gehrich, D. W.
Liibbers, N. Optiz, D. R. Hansmann, W. W. Miller, J. K. Tusa, and M. Yafuso,
“Optical fluorescence and its application to an intr avascular blood gas
monitoring system,”  |EEE Trans. Biomed. Eng., 1986, BME-33, 117-132. Used
by permission.)
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Figure 10.18 Dependence of current on potassium ion activity for a
potassium ion-sensitive field-effect transistor.

T . ’
Variable absorption due to Pulse-
added volume of arterial blood
Absorption due to arterial blood
Absorption due to venous blood
g
B
k=3
2
=
<
Absorption due to tissue
Yy >

Time

Figure 10.19 The pulse oximeter analyzes the light ab  sorption at two
wavelengths of only the pulse-added volume of oxyge nated arterial blood.
[From Y. M. Mendelson, “Blood gas measurement, trans ~ cutaneous,” in J. G.
Webster (ed.), Encyclopedia of Medical Devices and Instrumentation. New
York: Wiley, 1988, pp. 448-459. Used by permission. ]




Figure 10.20 (a) Noninvasive patient monitor capable  of measuring ECG,
noninvasive blood pressure (using automatic oscillo metry), respiration (using
impedance pneumography), transmission pulse oximetr y, and temperature.
(From Criticare Systems, Inc. Used by permission.) (b) Disposable
transmission SO2 sensor in open position. Note the light sources and
detector, which can be placed on each side of the f  inger. (From Datascope
Corporation. Used by permission.)
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Figure 10.21 Cross-sectional view of a transcutaneou s oxygen sensor.
Heating promotes arterialization. (From A. Huch and R. Huch,
“Transcutaneous, noninvasive monitoring of PO2," Hospital Practice, 1976,
6, 43-52. Used by permission.)
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Figure 10.22 Cross-sectional view of a transcutaneou s carbon dioxide
sensor. Heating the skin promotes arterialization. ( From A. Huch, D. W.
Libbers, and R. Huch, “Patientenuberwachung durch tr anscutane Pco2
Messung bei gleiechzeiliger koutrolle der relatiuen lokalen perfusion,”
Anaesthetist, 1973, 22, 379. Used by permission.)
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Figure 10.23 (a) Atest strip is inserted into the m  eter. (b) A lance is released
to lance the skin less than 1 mm. (c) The 1 pL bloo  d sample is applied to the
end of the test strip and drawn into it by capillar y action. (d) 5 s later the meter
displays the blood glucose in mg/dL. From www.LifeS can.com.
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Figure 10.24 (a) In the enzyme
electrode, when glucose is present .S
it combines with 02, so less 02

arrives at the cathode. (b) In the =
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Nature, 1967, 214, 986-988. Used by
permission.)
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Figure 10.25 The affinity sensor measures glucose co  ncentration by
detecting changes in fluorescent light intensity ca used by competitive binding
of a fluorescein-labeled indicator. (From J. S. Sch  ultz, S. Manouri, etal.,
“Affinity sensor: A new technique for developing imp lantable sensors for
glucose and other metabolites,” Diabetes Care, 1982 5, 245-253. Used by
permission.)
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Figure 10.27 The infrared absorption spectrum
a strong absorption peak at 9.7 mm. (From Y. M.
R. A. Peura, and B. C. Lin, “Blood glucose meas

attenuated total reflection and infrared absorption

Trans. Biomed Eng., 1990, 37, 458-465. Used

ofanh  ydrous D-glucose has
Men delson, A. C. Clermont,
ureme  nt by multiple
spectroscopy,” |EEE

by permission.)
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Figure 10.28 A printed organic thin-film transisto ~ r senses volatile organic

compounds to yield an affordable electronic nose. A 2.5 nm chrome adhesion
layer and 50 nm thick gold source and drain pads ar e thermally evaporated
onto 95 nm of thermally grown wet oxide. The active material is spun cast or
drop cast. From J. B. Chang, V. Liu, V. Subramanian , K. Sivula, C. Luscombe,
A. Murphy, J. Liu, and J. M. J. Fréchet, Printable  polythiophene gas sensor
array for low-cost electronic noses,  J. Appl, Phys., 2006, 100, 014506.
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Figure 10.29 Schematic of a passive pumping device
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