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Blood Pressure and Sound

Figure 7.1 The left
ventricle ejects
blood into the
systemic

circulatory system.
The right ventricle
ejects blood into
the pulmonary
circulatory system.
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Figure 7.2 Typical values of circulatory pressures S P is the systolic
pressure, DP the diastolic pressure, and MP the mea  n pressure.

Figure 7.3 Extravascular pressure-
sensor system A catheter couples a
flush solution (heparinized saline)
through a disposable pressure sensor
with an integral flush device to the
sensing port. The three-way stopcock
is used to take blood samples and zero
the pressure sensor.
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Figure 7.5 Fiber-optic pressure sensor for intracran
measure-ments in the newborn. The sensor membrane i
with the anterior fontanel of the newborn.
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Figure 7.6  The first six harmonics of the blood-pres
table gives relative values for amplitudes. (From T

Measure-ment in the Human Organism,”
1949, 19, Suppl. 68, 1-227. Used with permission.)
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Figure 7.7 (@) Physical model of a catheter-sensor s ystem, (b) Analogous
electric system for this catheter-sensor system. Ea  ch segment of the catheter
has its own resistance  Rc, inertance Lc, and compliance Cc. In addition, the
sensor has resistance  Rs, inertance, Ls, and compliance Cs. The compliance
of the diaphragm is  Cd.

Figure 7.8  (a) Simplified
analogous circuit. Compliance of
the sensor diaphragm is larger
than compliance of catheter or
sensor cavity for a bubble-free,
noncompliant catheter. The
resistance and inertance of the
catheter are larger than those of
the sensor, because the catheter
has longer length and smaller
diameter, (b) Analogous circuit
for catheter—sensor system with
abubble in the catheter.
Catheter properties proximal to
the bubble are inertance  Lc and
resistance Rc. Catheter
properties distal to the bubble
are Lcd and Rtf. Compliance of
the diaphragmis  Cd; compliance
of the bubbleis Cb. (c)
Simplified analogous circuit for
catheter—sensor system with a
bubble in the catheter, assuming
that Lcd and Rced are negligible
with respectto Rcand Lc.
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Figure 7.9 Frequency- §=0033
response curves for 10~
catheter—sensor system
with and without bubbles.
Natural frequency
decreases from 91 Hz to 22 10
Table 7.1 Mechanical Characteristics of Fluids Hz and damp-ing ratio
increases from 0.033 to
Parameter Substance Temperature Value 0.137 with the bubble
- present.
n Water 20°C 0.001 Pa-s o1
n Water 3= 0.0007 Pa-s
" Air 20°C 0.000018 Pa-s r 1 AP 12
P Air 20°C 1.21kg/m? f —
AV/AP Water 20°C 0.53 x 10~ m’/N per ml volume n— 001 -
n Blood All =4 x n for water 2 7{,0L AV
0.01 0:)2 011)40:)(: ()ll 1)'22 ﬂIA Olﬁ l: ; : (Iy ilillﬂ
Table 7.1 e
] 4n (L(AV/AP)\'?
r TP
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Figure 7.10 Transient-response technique for testing
catheter-sensor system.
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Figure 7.11  Pressure-sensor transient response Negat

B}

pressure is recorded on the top channel; the bottom

response for a Statham P23Gb sensor connected to a

mm ID). (From I. T. Gabe, "Pressure Measurement in
Physiology," in D. H. Bergel, ed., Cardiovascular F

York: Academic Press, 1972.)
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Figure 7.12 A sinusoidal pressure-generator test sys  tem A low-frequency
sine generator drives an underwater-speaker system that is coupled to the
catheter of the pressure sensor under test. An "ide  al" pressure sensor, with a
frequency response from 0 to 100 Hz, is connected di  rectly to the test chamber
housing and monitors input pressure.
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Figure 7.13  Pressure-waveform distortion (a) Recordi

left-ventricular pressure waveform via a pressure s

to 100 Hz. (b) Underdamped response, where peak valu

delay is also evident in this recording, (c) Overda
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(a) Undistorted pressure waveform

(b) Air bubble in catheter

(c) Catheter whip distortion
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Figure 7.14 Distortion during the recording of arter
trace is the response when the pressure catheter is
accelerating blood in regions of high pulsatile flo W.

Figure 7.15
Correlation of the
four heart
sounds with
electric and
mechanical
events of the
cardiac cycle.
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Figure 7.16
Auscultatory areas
on the chest A,
aortic; P, pulmonary;
T, tricuspid; and M,
mitral areas. (From
A. C. Burton,
Physiology and
Biophysics of the
Circulation, 2nd ed.
Copyright © 1972 by
Year Book Medical
Publishers, Inc.,
Chicago. Used by
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Figure 7.17  The typical frequency-response curve for
found by applying a known audiofrequency signal to
stethoscope by means of a headphone-coupler arrange
output of the stethoscope earpiece was monitored by
microphone system. (From P. Y. Ertel, M. Lawrence,
Stern, Stethoscope Acoustics |, "The Doctor and his
Circulation 34, 1966; by permission of American Hea
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Figure 7.18 (a) Systolic pressure gradient (left ven tricular-aortic pressure)
across a stenotic aortic valve, (b) Marked decrease in systolic pressure
gradient with insertion of an aortic ball valve.

Figure 7.19 Model for deriving
equation for heart-valve orifice

Orifice

area P1and P2 are upstream
and downstream static
pressures. Velocity uis
calculated for minimal flow area
A at location 2.

2
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Table 7.2 Relative Importance of the Kinetic-Energy Term in Different
Parts of the Circulation

Vel KE Systolic % KE

Vessel (cm/s) (mm Hg) (mm Hg) (kPa) of Total
Aorta (systolic)

At rest 100 4 120 (16) 3

Cardiac output at 3 x rest 300 36 180 (24) 17
Brachial artery

At rest 30 0.35 110 (14.7) 03

Cardiac output at 3 x rest 90 4 120 (16) 3
Venae cavae

Atrest 30 0.35 2 0.3) 12

Cardiac output at 3 x rest 90 32 3 (0.4) 52,
Pulmonary artery

Atrest 90 3 20 @7 13

Cardiac output at 3 x rest 270 27 25 (3.3) 52

Source: From A. C. Burton, Physiology and Biophysics of the Circulation. Copyright
1972 by Year Book Medical Publishers, Inc., Chicago. Used by permission.

Table 7.2

2
pu Sens
P 7P _ Sensor
1 2 =5
12 12
) atn)
5 2(P1 — P)) ca \2(Py — P»)
Pressure,
KPa | mm Hg . .
N T —

R Diastolic

Sphygmomanometer cuff

Figure 7.20 Typical indirect blood-pressure measurem
sphygmomanometer cuff is inflated by a hand bulb to

pressure

ent system The
pressure above the

systolic level. Pressure is then slowly released, a  nd blood flow under the cuff

is monitored by a microphone or stethoscope placed

over a downstream

artery. The first Korotkoff sound detected indicate d systolic pressure,
whereas the transition from muffling to silence bra ckets diastolic pressure.
(From R.F. Rushmer, Cardiovascular Dynamics, 3rd ed., 1970. Philadelphia:

W.B. Saunders Co. Used with permission.)
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Figu_re 7.21 Ultrasonic determ_ination of blood pressu re A compression Cuff pressute oséillations
cuff is placed over the transmitting (8 MHz) and rec  eiving (8 MHz + Af) . . . . o
crystals. The opening and closing of the blood vess el are detected as the Figure 7.22  The oscillometric method A compression cu  ff s inflated
applied cuff pressure is varied. (From H. F. Stegal I, M. B. Kardon, and W. T. above systolic pressure and slowly deflated. Systol ic pressure is detected
Kemmerer, “Indirect Measurement of Arterial Blood P ressure by Doppler (Point 1) where there is a transition from smallam  plitude oscillations (above
Ultrasonic Sphygmomanometry,”  J. Appl. Physiol., 1968, 25, 793-798. Used systolic pressure) to increasing cuff-pressure ampl itude. The cuff-pressure
with permission.) oscillations increase to a maximum (Point 2) at the mean arterial pressure.
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Figure 7.23 Block diagram of the major componentsan  d subsystems of an Figure 7.24 ;\Aonitoring system fdor noncz:ntact ?PP'a"a tion tonov’lnetE(
oscillometric blood-pressure monitoring device, bas ed on the Dinamap unit, EI'me M. FOIS es, G. Plco.&]rél_ar_\ IBI-EGVIO man, "A N ; ‘Z”C%nlgCthAl:]P lana?on
1/0 = input/output; MAP = mean arterial pressure; H R = heart rate; SYS = onometer, Description ant " inical Evaluation, d" TCI - Ophthalmo Ogd)lv
systolic pressure; DYS = diastolic pressure. From R amsey M Ill. Blood 19;5 91, 134-140. Copyright © 1975, American Medic  al Association. Usef
pressure monitoring: automated oscillometric device s, J. Clin. Monit. 1991, 7, with permission.)
56-67.
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Figure 7.25 Idealized model for an arterial tonometer , (a) a flattened portion
of an arterial wall (membrane). P is the blood pressure in a superficial artery, Figure 7.26  Multiple-element arterial tonometer. The  multiple element linear
and F is the force measured by a tonometer transducer, (b ) a free-body array of force sensors and arterial riders are used to position the system
diagram for the idealized model of (a) in which T is the membrane tensile such that some element of the array is centered ove  r the artery. From Eckerle,
force perpendicular to both  F and P. From Eckerle, J. D., "Tonometry, J. D., "Tonometry, arterial," in J. G. Webster (ed. ), Encyclopedia of Medical
arterial,” in J. G. Webster (ed.), Encyclopedia of Medical Devices and Devices and Instrumentation. 2nd ed. New York: Wiley, 2006, vol. 6, pp. 402—

Instrumentation. 2nd ed. New York: Wiley, 2006, vol. 6, pp. 402—41 0. 410.




