Biomedical Instrumentation

Prof. Dr. Nizamettin AYDIN
naydin@yildiz.edu.tr
naydin@ieee.org
http://www.yildiz.edu.tr/~naydin

Amplifiers and Signal Processing

Applications of Operational Amplifier

 In Biological Signals and Systems- The three major operations done on biological signals using Op-Amp:
- Amplifications and Attenuations
- DC offsetting:
- add or subtract a DC
- Filtering:
- Shape signal's frequency content

Ideal Op-Amp

- Most bioelectric signals are small and require amplifications Op-amp equivalent circuit:

The two inputs are v_{1} and v_{2}. A differential voltage between them causes current flow through the differential resistance R_{d}. The differential voltage is multiplied by A , the gain of the op amp, to generate the output-voltage source. Any current flowing to the output terminal v_{o} must pass through the output resistance R_{o}.

Ideal Characteristics

- $A=\infty$ (gain is infinity)
- $V_{o}=0$, when $v_{1}=v_{2}$ (no offset voltage)
- $R_{d}=\infty$ (input impedance is infinity)
- $R_{o}=0$ (output impedance is zero)
- Bandwidth $=\infty$ (no frequency response limitations) and no phase shift

- Rule 1
- When the op-amp output is in its linear range, the two input terminals are at the same voltage
- Rule 2
- No current flows into or out of either input terminal of the op amp.

Summing Amplifier

$v_{o}=-R_{f}\left(\frac{v_{1}}{R_{1}}+\frac{v_{2}}{R_{2}}\right)$

Answer 3.1

- We assume that v_{b}, the balancing voltage at $v_{i}=5 \mathrm{~V}$. For $v_{o}=0$, the current through R_{f} is zero. Therefore the sum of the currents through R_{i} and R_{b}, is zero.
$\frac{v_{o}}{R_{i}}+\frac{v_{b}}{R_{b}}=0 \Rightarrow R_{b}=\frac{-R_{i} v_{b}}{v_{i}}=\frac{-10^{4}(-10)}{5}=2 \times 10^{4} \Omega$

Example 3.1

- The output of a biopotential preamplifier that measures the electro-oculogram is an undesired dc voltage of $\pm 5 \mathrm{~V}$ due to electrode half-cell potentials, with a desired signal of $\pm 1 \mathrm{~V}$ superimposed. Design a circuit that will balance the dc voltage to zero and provide a gain of -10 for the desired signal without saturating the op amp.

$$
{ }^{\text {(b) }}
$$

a) An inverting amplified. Current flowing through the input resistor R_{i} also flows through the feedback resistor R_{f}.
(b) The input-output plot shows a slope of $-R_{\mathrm{f}} / R_{\mathrm{i}}$ in the central portion, but the output saturates at about $\pm 13 \mathrm{~V}$.

$$
v_{o}=-\frac{R_{f}}{R_{i}} v_{i} \quad G=\frac{v_{o}}{v_{i}}=-\frac{R_{f}}{R_{i}}
$$

(b)

Noninverting Amplifier	
$v_{o}=\frac{R_{f}+R_{i}}{R_{i}} v_{i}$	$G=\frac{R_{f}+R_{i}}{R_{i}}=\left(1+\frac{R_{f}}{R_{i}}\right)$

Differential Amplifiers

- Differential Gain $\boldsymbol{G}_{\boldsymbol{d}}$

$$
G_{d}=\frac{v_{o}}{v_{4}-v_{3}}=\frac{R_{4}}{R_{3}}
$$

- Common Mode Gain $\boldsymbol{G}_{\boldsymbol{c}}$

For ideal op amp if the inputs are equal then the output $=0$, and the $G_{c}=0$. No differential amplifier perfectly rejects the common-mode voltage.

$$
v_{o}=\frac{R_{4}}{R_{3}}\left(v_{4}-v_{3}\right)
$$

- Common-mode rejection ratio CMMR Typical values range from 100 to 10,000 $C M R R=\frac{G_{d}}{G_{c}}$
- Disadvantage of one-op-amp differential amplifier is its low input resistance

Comparator - With Hysteresis

- Reduces multiple transitions due to mV noise levels by moving the threshold value after each transition.

One-Op-Amp Full Wave Rectifier

- For $v_{\mathrm{i}}<0$, the circuit behaves like the inverting amplifier rectifier with a gain of +0.5 . For $v_{\mathrm{i}}>0$, the op amp disconnects and the passive resistor chain yields a gain of +0.5 .

Logarithmic Amplifiers

(a) With the switch thrown in the alternate position, the circuit gain is increased by 10 . (b) Input-output characteristics show that the logarithmic relation is obtained for only one polarity; $\times 1$ and $\times 10$ gains are indicated.

- A three-mode integrator

With S_{1} open and S_{2} closed, the dc circuit behaves as an inverting amplifier. Thus $v_{\mathrm{o}}=v_{\mathrm{ic}}$ and v_{o} can be set to any desired initial conduction. With S_{1} closed and S_{2} open, the circuit integrates. With both switches open, the circuit holds v_{0} constant, making possible a leisurely readout.

Differentiators

- A differentiator
- The dashed lines indicate that a small capacitor must usually be added across the feedback resistor to prevent oscillation.

Active Filters (High-Pass Filter)

- A high-pass filter attenuates low frequencies and blocks dc.
Gain $=\mathrm{G}=\frac{V_{o}(j \omega)}{V_{i}(j \omega)}=\frac{-R_{f}}{R_{i}} \frac{j \omega R_{i} C_{i}}{1+j \omega R_{i} C_{i}}$

Active Filters- Low-Pass Filter

- A low-pass filter attenuates high frequencies Gain $=\mathrm{G}=\frac{V_{o}(j \omega)}{V_{i}(j \omega)}=\frac{-R_{f}}{R_{i}} \frac{1}{1+j \omega R_{f} C_{f}}$

Active Filters (Band-Pass Filter)

- A bandpass filter attenuates both low and high frequencies.

$$
\frac{V_{o}(j \omega)}{V_{i}(j \omega)}=\frac{-j \omega R_{f} C_{i}}{\left(1+j \omega R_{f} C_{f}\right)\left(1+j \omega R_{i} C_{i}\right)}
$$

| Frequency Response of op-amp and Amplifier |
| :--- | :--- | :--- |
| - Open-Loop Gain |
| - Compensation |
| - Closed-Loop Gain |
| - Loop Gain |
| - Gain Bandwidth Product |
| - Slew Rate |

Input and Output Resistance

$$
\begin{array}{ll}
R_{a i}=\frac{\Delta v_{i}}{\Delta i_{i}}=(A+1) R_{d} & R_{a o}=\frac{\Delta v_{o}}{\Delta i_{o}}=\frac{R_{o}}{A+1} \\
\text { Typical value of } \mathrm{R}_{\mathrm{d}}=2 \text { to } 20 \mathrm{M} \Omega & \text { Typical value of } \mathrm{R}_{\mathrm{o}}=40 \Omega
\end{array}
$$

The Ring Demodulator

- If v_{c} is positive then D_{1} and D_{2} are forward-biased and $v_{\mathrm{A}}=v_{\mathrm{B}}$. So $v_{\mathrm{o}}=v_{\mathrm{DB}}$
- If v_{c} is negative then D_{3} and D_{4} are forward-biased and $v_{\mathrm{A}}=v_{\mathrm{c}}$. So $v_{\mathrm{o}}=v_{\mathrm{DC}}$

