Biomedical Instrumentation

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr
naydin@ieee.org
http://www.yildiz.edu.tr/~naydin

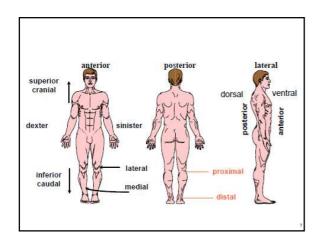
Biomedical Instrumentation

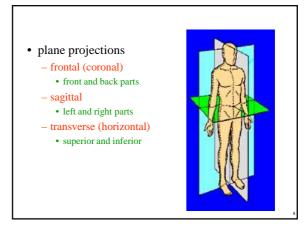
Lecture 2

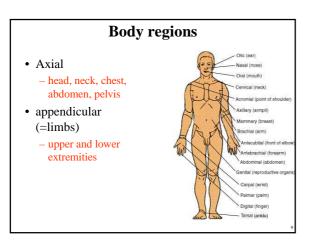
Physiological and anatomical background

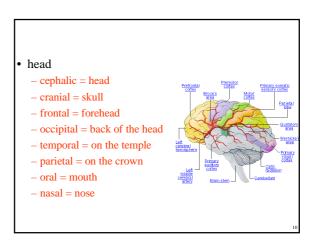
Importance of human anatomy and physiology for BME

- BME is an interdisciplinary field based in both
 - engineering and
 - life sciences
- Important that biomedical engineers
 - have knowledge about both areas
 - are able to communicate in both areas
- Basic components of the body must be understood and how they function to
 - understand I imitations of engineering with respect to human body
 - exchange ideas with medical professionals
 - develop new ideas


- Anatomy
 - internal and external structures of the body and their physical relationships
- · Physiology
 - functions of those structures
- · Medical terminology


Anatomical positions


- · superior inferior
 - superior vena cava is in the chest, inferior vena cava is in the abdomen
- distal proximal
 - upper arm is proximal to the elbow, lower arm is distal to the elbow
- medial lateral
 - nose is medial to the eyes; ears are lateral to the eyes
- central peripheral
 - central nervous system is located along the main axis of the body;
 - peripheral nervous system is outside the central nervous system
- anterior (ventral) posterior (dorsal)
 - trachea is anterior to the esophagus, while esophagus is posterior to the trachea


Anatomical positions

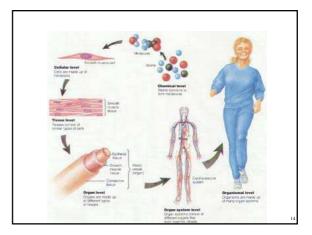
- superficial deep
 - Superficial blood vessels are closer to the skin than those that lie deep in the abdominal cavity.
- afferent efferent
 - la neuron is afferent leading to the spinal cord but motoneuron is efferent because it leads to the muscle
- · descending ascending
 - ascending and descending aorta
- $\bullet \quad internal-external \\$
 - intra- and extra cellular space is divided by cell membrane
- dexter sinister
 - heart is usually located on the left side of the thorax
- ipsilateral contralateral
 - rm and leg can be ipsilateral (on the same side) but legs and contralateral (on opposite side)

Thorax

 Pectoral = chest
 Mammary = breast
 Axillary = armpit
 Vertebral = backbone
 Costal = ribs

 Abdomen

 Pelvic = lower portion of abdomen
 Gluteal = buttock
 Inguinal = groin
 Groin = depressed region of abdomen near thigh


- Lumbar = lower back

terminate

- Sacral = where vertebrae

Body organizations

- Atom
 - submicroscopio
- Molecule
 - formed by a group of atoms
- Cellular or Organelle
- tiny membranous structures that perform cell functions
- Tissue
 - composed of similar types of cells and performs a specific function
- Organ
 - composed of several types of tissues and performs a particular function
- Organ system
 - group of related organs working together
- Organism
 - a living thing

Cellular organization

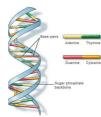
- Cells
- smallest anatomical and physiological unit in the human body
- · composed of
 - organic compounds
 - carbohydrates, lipids, proteins, nucleic acids
 - work as energy packet, storehouses of energy and hereditary information, structural materials, metabolic workers
 - water (60 % of the weight)
 - most common elements: O, C, H, N, Ca, F, K, Na, Cl, Mg

Cells, compounds

- · carbohydrates
 - Function:
 - structural material,
 - transport,
 - · energy storage
 - Types:
 - Monosaccharides (glugose)
 - Oligosaccharides (lactose, maltose)
 - Polysaccharides (glycogen)

• lipids

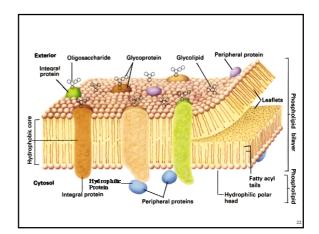
- Greasy or oily compounds that dissolve in each other but not in water
- Function:
 - structural materials in cells
 - main reservoirs of stored energy


· proteins

- Most diverse form of biological molecules, built from a small number (20) of essential amino acids
- Enzymes (specialized proteins):
 - Make metabolic reactions proceed at a faster rate
 - Enable cells to produce the organic compounds of life
- Structural elements in a body
- Act as transport channels across cell membranes
- Function as signals for changing activities
- Provide chemical weapons against disease-carrying bacteria

17

Nucleotides and nucleic acids


- Nucleotides: small organic compounds that contain
 - a five-carbon sugar (ribose or deoxyribose)
 - a phosphate group, ATP (adenosine triphosphate)
 ENERGY of the cells
 - Nitrogen-containing base
- · Nucleic acids
 - DNA, deoxyribonucleic acid
 - Helical molecule that contains chains of paired nucleotides that run in opposite directions
 - RNA, ribonucleic acid
 - Contain
 - Pyrimidine bases: thymine (T) or cytosine (C)
 - Purine bases: adenine (A) or guanine (G)

Cellular organization

- Cells
 - Cells are surrounded by plasma membrane that separates (not isolate) cell's interior from its environment
- · Plasma membrane
 - Gives mechanical strength
 - Provides structure
 - Helps with movement
 - Controls the cell's volume
 - Controls cell's activities by regulating the movement of chemicals in and out of the cell

- Plasma membrane is composed of:
 - Two layers of phospholipids (fat) interspersed with protein and cholesterol
- Proteins are:
 - binding sites for hormones,
 - recognition markers for identifying cells
 - adhesive mechanisms for binding adjacent cells to each other
 - channels for transporting materials across plasma membrane

Plasma membrane

- Permeability, P [m/s]
- P=D/h
- -D = diffusion coefficient
- -h =thickness of the membrane
- Some molecules can easily cross the plasma membrane:
 - gases: oxygen, carbon dioxide
 - small uncharged polar molecules: urea, water
- Other substances must move through the protein channels
 - large molecules and ions

Plasma membrane

- · Permeability
 - transport mechanisms:
 - passive transport
 - movement of dissolved matter toward thermodynamical equilibrium (along the electrochemical gradient)
 - direct diffusion through the lipid
 - · electro diffusion through the protein channels
 - · facilitated diffusion through channels (carrier mediated)
 - active transport
 - consumes energy
 - as a result of the active transport, an equilibrium is achieved that differs from the thermo-dynamical equilibrium
 - can occur against the electrochemical gradient

Plasma membrane

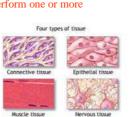
- · Permeability
 - - · Process by which substances move across a selectively permeable membrane (=plasma membrane)
 - Diffusion
 - Movement of molecules from an area of relatively high concentration to an area of low concentration (⇒ diffusion equilibrium)

 C = concentration

 - D = diff. coefficient
 - f = friction

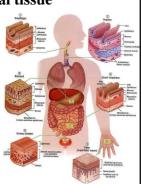
 $J_D=D(\Delta C/\Delta x), D=kT/f$

Active transport

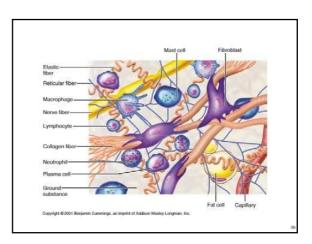

- Requires energy (ATP) to move ions across the membrane usually from low to high concentration area
- Na-K pump
- · Generate ion gradients across the membrane
 - For transport processes and to generate electric signals

Plasma membrane

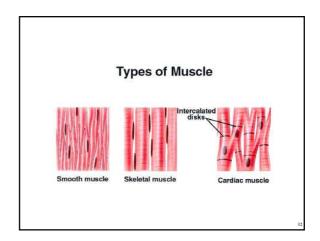
- Role to regulate cell volume
 - By controlling the internal osmolarity of the cell
 - Osmolarity = concentration of dissolved substances
 - 1 Osm = 1 mol of dissolved particles in liter of a solution
 - high osmolarity = low water concentration


Tissues

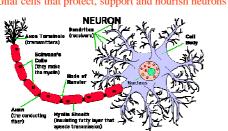
- Tissues:
 - Groups of cells and surrounding substances that function together to perform one or more specialized activities
- Tissue types:
 - Epithelial
 - Connective
 - Muscle
 - Nervous


Epithelial tissue

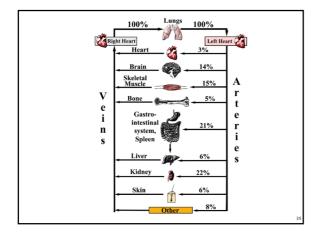
- absorption (small intestine),
- secretion (glands),
- transport (kidney tubulus)
- excretion (sweat glands)
- protection (skin),
- sensory reception (taste buds)


Connective tissue

- · Most abundant and widely distributed
- Loose (woven fibers around and between tissues)
- Irregularly dense (protective capsules around organs)
- Regularly dense (ligament and tendons)
- · Specialized connective tissues
 - Blood
 - Bone
 - cartilage


Muscle tissue

- Provide movement for the body
- Specialized cells that can shorten in response to stimulation and then return to their uncontracted state
- Types:
 - Skeletal (attached to bones)
 - Smooth (in the walls of vessels)
 - Cardiac (only in the heart)

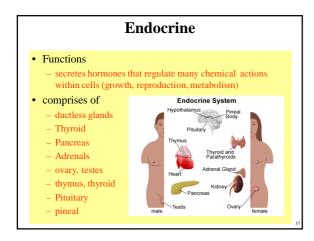

Nervous tissue

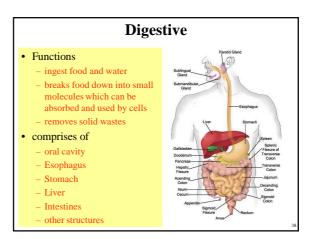
- Consists
 - neurons that conduct electrical impulses
 - Glial cells that protect, support and nourish neurons

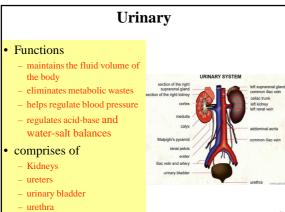
Major organ systems

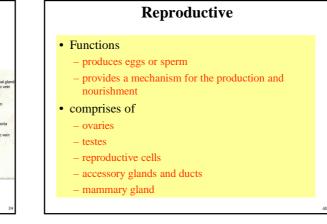
- Organs:
 - Combinations of tissues that perform complex tasks
- · Organ systems
 - Organs that function together
 - 11 organ systems
 - Integumentary, endocrine, lymphatic, digestive, urinary, reproductive, circulatory, nervous, respiratory, skeletal, muscular

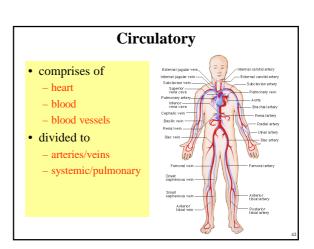
Integumentary

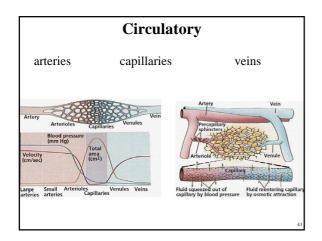

Functions

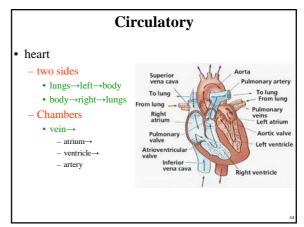

- provides body covering,
- protection,
- synthesis of vitamin D,
- site of cutaneous receptors
- and sweat glands

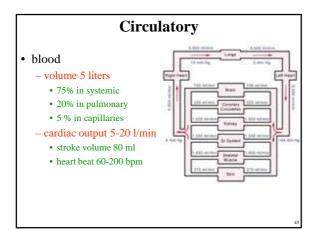

comprises of

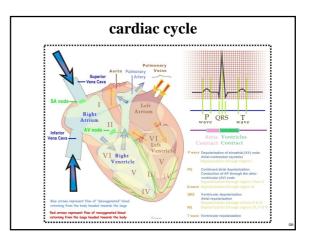

- Skin
- Hair
- Nails
- various glands

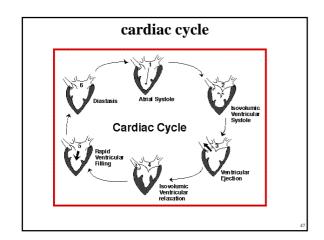


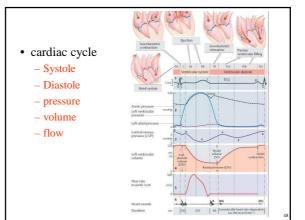


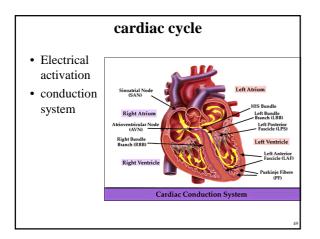


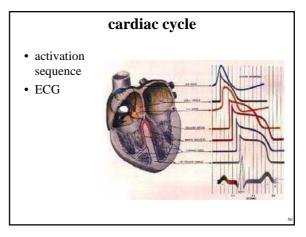


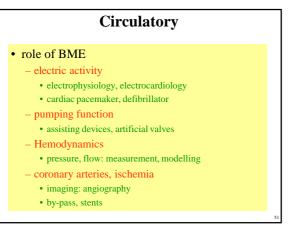

Circulatory Functions - serves as distribution system of various substances and solutions for the body • nutrients, hormones, oxygen - removes waste products • carbon dioxide - provides mechanism for regulating temperature and removing the heat generated by the metabolic activities of the body's internal organs

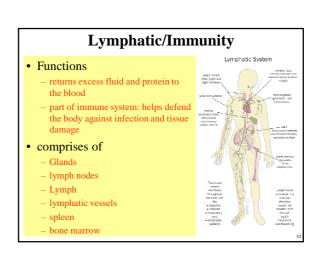


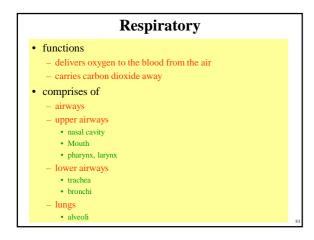


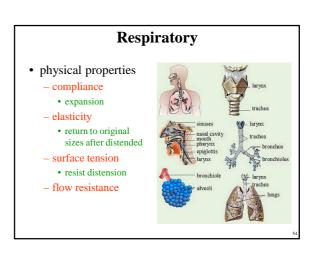


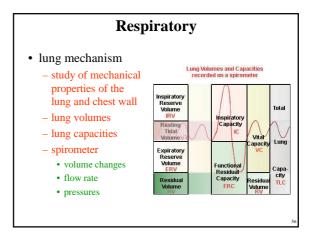




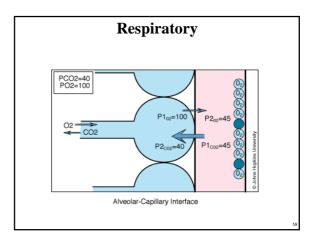




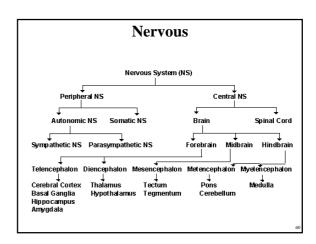


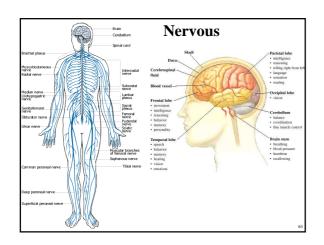


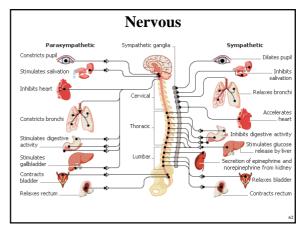
Respiratory

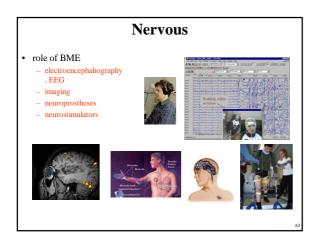

- breathing (ventilation)
 - mechanical process composed of:
 - inspiration (active)
 - inspiratory muscles contract ⇒
 thoracic cavity enlarges ⇒
 alveoli enlarge ⇒

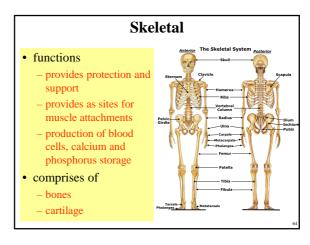
 - alveolar gas espands ⇒
 pressure within lungs drops below atm. pressure ⇒
 - air flows in (Boyle's law)
 - expiration (passive)
 - inspiratory muscles relax ⇒ thoracic cavity returns to its original volume
 - normal frequency: 15-20 breaths per minute


Respiratory


- gas exchange
 - between blood and alveoli
 - direction and rate of movement of gas depends on
 - partial pressure gradient ⇒diffusion
 - surface are of alveoli:
 - about 3.5×108 alveoli =60-70 m2 for gas exchange
 - thickness of membrane that the gas must pass trough
 - diffusion constant (∝ solubility and molecular weight of gas (Fick's law)




Nervous


- Functions
 - regulates most of the body activities detecting and responding to internal and external stimuli
 - higher (intelligent) function
- · comprises of
 - central nervous system
 - brain, spinal cord
 - peripheral nervous system
 - · somatosensory and motor nerves
 - somatic and autonomic sensory system
 - sensory organs

