
Copyright 2000 N. AYDIN. All rights

reserved. 1

BLM5207

Computer Organization

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

Programming

1

Solving Problems using a Computer

• Methodologies for creating computer programs
that perform a desired function.

– Problem Solving

• How do we figure out what to tell the computer to do?

• Convert problem statement into algorithm, using stepwise
refinement.

• Convert algorithm into machine instructions.

– Debugging

• How do we figure out why it didn’t work?

• Examining registers and memory, setting breakpoints, etc.

• Time spent on the first can reduce time spent on
the second!

2

Stepwise Refinement

• Also known as systematic decomposition.

• Start with problem statement:

– “We wish to count the number of occurrences of a

character in a file. The character in question is to be

input from the keyboard; the result is to be displayed

on the monitor.”

• Decompose task into a few simpler subtasks.

• Decompose each subtask into smaller subtasks,

and these into even smaller subtasks, etc....

until you get to the machine instruction level.

3

Problem Statement

• Because problem statements are written in English,

they are sometimes ambiguous and/or incomplete.

– Where is “file” located?

– How big is it, or how do I know when I’ve reached the

end?

– How should final count be printed? A decimal number?

– If the character is a letter, should I count both

upper-case and lower-case occurrences?

• How do you resolve these issues?

– Ask the person who wants the problem solved, or

– Make a decision and document it.

4

5

Three Basic Constructs

• There are three basic ways to decompose a

task:
Task

Subtask 1

Subtask 2

Sequential Conditional Iterative

Subtask

Test

condition

True

False

Subtask 1 Subtask 2

Test

condition

True False

6

Sequential

• Do Subtask 1 to completion,

then do Subtask 2 to completion, etc.

Get character

input from

keyboard

Examine file and

count the number

of characters that

match

Print number

to the screen

Count and print the

occurrences of a

character in a file

1 2

3 4

5 6

mailto:naydin@yildiz.edu.tr

Copyright 2000 N. AYDIN. All rights

reserved. 2

7

Conditional

• If condition is true, do Subtask 1;

else, do Subtask 2.

Test character.

If match, increment

counter.
Count = Count + 1

file char

= input?

True False

8

Iterative

• Do Subtask over and over,

as long as the test condition is true.

Check each element of

the file and count the

characters that match.

Check next char and

count if matches.

more chars

to check?

True

False

9

Problem Solving Skills

• Learn to convert problem statement
into step-by-step description of subtasks.

– Like a puzzle, or a “word problem” from grammar
school math.

• What is the starting state of the system?

• What is the desired ending state?

• How do we move from one state to another?

– Recognize English words that correlate to three basic
constructs:

“do A then do B”  sequential

“if G, then do H”  conditional

“for each X, do Y”  iterative

“do Z until W”  iterative
10

Debugging

• You’ve written your program and it doesn’t work.

– Now what?

• What do you do when you’re lost in a city?

– Drive around randomly and hope you find it?

– Return to a known point and look at a map?

• In debugging, the equivalent to looking at a map is

tracing your program.

– Examine the sequence of instructions being executed.

– Keep track of results being produced.

– Compare result from each instruction to the expected

result.

11

Debugging Operations

• Any debugging environment should provide means to:

– Display values in memory and registers.

– Deposit values in memory and registers.

– Execute instruction sequence in a program.

– Stop execution when desired.

• Different programming levels offer different tools.

– High-level languages (C, Java, ...)
usually have source-code debugging tools.

– For debugging at the machine instruction level:
• simulators

• operating system “monitor” tools

• in-circuit emulators (ICE)

– plug-in hardware replacements that give
instruction-level control

12

Types of Errors

• Syntax Errors

– You made a typing error that resulted in an illegal operation.

– Not usually an issue with machine language, because almost any bit
pattern corresponds to some legal instruction.

– In high-level languages, these are often caught during the translation
from language to machine code.

• Logic Errors

– Your program is legal, but wrong, so the results don’t match the
problem statement.

– Trace the program to see what’s really happening and determine how
to get the proper behavior.

• Data Errors

– Input data is different than what you expected.

– Test the program with a wide variety of inputs.

7 8

9 10

11 12

Copyright 2000 N. AYDIN. All rights

reserved. 3

13

Tracing the Program

• Execute the program one piece at a time, examining register and

memory to see results at each step.

• Single-Stepping

– Execute one instruction at a time.

– Tedious, but useful to help you verify each step of your program.

• Breakpoints

– Tell the simulator to stop executing when it reaches a specific instruction.

– Check overall results at specific points in the program.

• Lets you quickly execute sequences to get a high-level overview of the

execution behavior.

• Quickly execute sequences that you believe are correct.

• Watchpoints

– Tell the simulator to stop when a register or memory location changes

or when it equals a specific value.

– Useful when you don’t know where or when a value is changed.

14

Debugging: Lessons Learned

• Trace program to see what’s going on.

– Breakpoints, single-stepping

• When tracing, make sure to notice what’s

really happening,

not what you think should happen.

• Test your program using a variety of input

data.

– Be sure to test extreme cases (all ones, no

ones, ...).

The Concept of an Algorithm

• Some Algorithms:

– Converting from one base to another

– Correcting errors in data

– Compression

⁝

– …

• Many researchers believe that every activity of

the human mind is the result of an algorithm

15

Formal Definition of Algorithm

• An algorithm is an ordered set of unambiguous, executable
steps that defines a terminating process
– The steps of an algorithm can be sequenced in different ways

– Linear (1, 2, 3, …)

– Parallel (multiple processors)

– Cause and Effect (circuits)

• A Terminating Process
– Culminates with a result

– Can include systems that run continuously
• Hospital systems

• Long Division Algorithm

• A Non-terminating Process
– Does not produce an answer

• “Non-deterministic Algorithms”

16

The Abstract Nature of Algorithms

• There is a difference between an algorithm and

its representation.

– Analogy:

• difference between a story and a book

• A Program

– a representation of an algorithm.

• A Process

– the activity of executing an algorithm.

17

Algorithm Representation

• Is done formally with well-defined Primitives

– A collection of primitives constitutes a programming

language.

• Is done informally with Pseudocode

– Pseudocode is between natural language and a

programming language.

18

13 14

15 16

17 18

Copyright 2000 N. AYDIN. All rights

reserved. 4

Designing a Pseudocode Language

• Choose a common programming language

• Loosen some of the syntax rules

• Allow for some natural language

• Use consistent, concise notation

• We will use a Python-like Pseudocode

19

Pseudocode Primitives

• Assignment

name = expression

– example

RemainingFunds = CheckingBalance +
SavingsBalance

• Conditional selection

if (condition):
activity

– example

if (sales have decreased):
lower the price by 5%

20

Pseudocode Primitives

• Conditional selection

if (condition):

activity

else:

activity

– example

if (year is leap year):

daily total = total / 366

else:

daily total = total / 365

21

Pseudocode Primitives

• Repeated execution

while (condition):
body

– example

while (tickets remain to be sold):
sell a ticket

• Indentation shows nested conditions

if (not raining):
if (temperature == hot):

go swimming
else:

play golf
else:
watch television

22

Pseudocode Primitives

• Define a function

def name():

– example

def ProcessLoan():

• Executing a function

if (. . .):
ProcessLoan()

else:
RejectApplication()

23

The procedure Greetings in pseudocode

def Greetings():

Count = 3

while (Count > 0):

print('Hello')

Count = Count - 1

24

19 20

21 22

23 24

Copyright 2000 N. AYDIN. All rights

reserved. 5

Pseudocode Primitives

• Using parameters

def Sort(List):
.
.
.

• Executing Sort on different lists

Sort(the membership list)

Sort(the wedding guest list)

25

Algorithm Discovery

• The first step in developing a program

• More of an art than a skill

• A challenging task

• Polya’s Problem Solving Steps

1. Understand the problem.

2. Devise a plan for solving the problem.

3. Carry out the plan.

4. Evaluate the solution for accuracy and its potential

as a tool for solving other problems.

26

Getting a Foot in the Door

• Try working the problem backwards

• Solve an easier related problem

– Relax some of the problem constraints

– Solve pieces of the problem first

• (bottom up methodology)

• Stepwise refinement:

– Divide the problem into smaller problems

• (top-down methodology)

27

Ages of Children Problem

• Person A is charged with the task of determining the ages of B’s three
children.
– B tells A that the product of the children’s ages is 36.

– A replies that another clue is required.

– B tells A the sum of the children’s ages.

– A replies that another clue is needed.

– B tells desired triple must be one whose sum appears at least twice in the table

– A replies that another clue is needed.

– B tells A that the oldest child plays the piano.

– A tells B the ages of the three children.

• How old are the three children?

28

Iterative Structures

• A collection of instructions repeated in a looping

manner

• Examples include:

– Sequential Search Algorithm

• The sequential search algorithm in pseudocode

def Search (List, TargetValue):
if (List is empty):

Declare search a failure
else:

Select the first entry in List to be TestEntry
while (TargetValue > TestEntry and entries remain):

Select the next entry in List as TestEntry
if (TargetValue == TestEntry):

Declare search a success
else:

Declare search a failure

29

Iterative Structures

– Insertion Sort Algorithm

• The insertion sort algorithm expressed in pseudocode

def Sort(List):
N = 2
while (N <= length of List):

Pivot = Nth entry in List
Remove Nth entry leaving a hole in List
while (there is an Entry above the

hole and Entry > Pivot):
Move Entry down into the hole leaving
a hole in the list above the Entry

Move Pivot into the hole
N = N + 1

30

25 26

27 28

29 30

Copyright 2000 N. AYDIN. All rights

reserved. 6

Components of repetitive control

• Initialize:

– Establish an initial state that will be modified toward

the termination condition

• Test:

– Compare the current state to the termination condition

and terminate the repetition if equal

• Modify:

– Change the state in such a way that it moves toward

the termination condition

31

Iterative Structures

• Pretest loop:

while (condition):

body

• Posttest loop:

repeat:

body

until(condition)

32

The while loop structure

33

The repeat loop structure

34

Sorting the list Fred, Alex, Diana, Byron, and Carol

alphabetically

35

The insertion sort algorithm expressed in pseudocode

def Sort(List):
N = 2
while (N <= length of List):

Pivot = Nth entry in List
Remove Nth entry leaving a hole in List
while (there is an Entry above the

hole and Entry > Pivot):
Move Entry down into the hole leaving
a hole in the list above the Entry

Move Pivot into the hole
N = N + 1

36

31 32

33 34

35 36

Copyright 2000 N. AYDIN. All rights

reserved. 7

37

Recursive Structures

• Repeating the set of instructions as a subtask of

itself.

• Multiple activations of the procedure are formed,

all but one of which are waiting for other

activations to complete.

• Example:

– The Binary Search Algorithm

38

Applying our strategy to search a list for the entry John

39

if (List is empty):
Report that the search failed

else:
TestEntry = middle entry in the List
if (TargetValue == TestEntry):

Report that the search succeeded
if (TargetValue < TestEntry):

Search the portion of List preceding TestEntry for
TargetValue, and report the result of that search

if (TargetValue > TestEntry):
Search the portion of List following TestEntry for
TargetValue, and report the result of that search

A first draft of the binary search technique

40

def Search(List, TargetValue):
if (List is empty):

Report that the search failed
else:

TestEntry = middle entry in the List
if (TargetValue == TestEntry):

Report that the search succeeded
if (TargetValue < TestEntry):

Sublist = portion of List preceding TestEntry
Search(Sublist, TargetValue)

if (TargetValue < TestEntry):
Sublist = portion of List following TestEntry
Search(Sublist, TargetValue)

The binary search algorithm in pseudocode

41

Recursively Searching

42

37 38

39 40

41 42

Copyright 2000 N. AYDIN. All rights

reserved. 8

Second Recursive Search

43

Second Recursive Search, Second Snapshot

44

45

• Requires initialization, modification, and a test

for termination (base case)

• Provides the illusion of multiple copies of the

function, created dynamically in a telescoping

manner

• Only one copy is actually running at a given

time, the others are waiting

Recursive Control

46

• The choice between efficient and inefficient

algorithms can make the difference between a

practical solution and an impractical one

• The correctness of an algorithm is determined by

reasoning formally about the algorithm, not by

testing its implementation

• The efficiency is measured as number of

instructions executed

– Uses big theta notation:

• Example: Insertion sort is in Θ(n2)

– Incorporates best, worst, and average case analysis

Correctness and Efficiency

47

Applying the insertion sort in a worst-case situation

48

43 44

45 46

47 48

Copyright 2000 N. AYDIN. All rights

reserved. 9

Graph of the worst-case analysis of the insertion sort algorithm

49

Graph of the worst-case analysis of the binary search algorithm

50

Software Verification

• Proof of correctness (with formal logic)

– Assertions

• Preconditions

• Loop invariants

• Testing is more commonly used to verify

software

• Testing only proves that the program is correct

for the test cases used

51

Chain Separating Problem

• A traveler has a gold chain of seven links.

• He must stay at an isolated hotel for seven nights.

• The rent each night consists of one link from the

chain.

• What is the fewest number of links that must be

cut so that the traveler can pay the hotel one link

of the chain each morning without paying for

lodging in advance?

52

Separating the chain using only three cuts

53

Solving the problem with only one cut

54

49 50

51 52

53 54

Copyright 2000 N. AYDIN. All rights

reserved. 10

The assertions associated with a typical while structure

55 56

55 56

	Slide 1: BLM5207 Computer Organization
	Slide 2: Solving Problems using a Computer
	Slide 3: Stepwise Refinement
	Slide 4: Problem Statement
	Slide 5: Three Basic Constructs
	Slide 6: Sequential
	Slide 7: Conditional
	Slide 8: Iterative
	Slide 9: Problem Solving Skills
	Slide 10: Debugging
	Slide 11: Debugging Operations
	Slide 12: Types of Errors
	Slide 13: Tracing the Program
	Slide 14: Debugging: Lessons Learned
	Slide 15: The Concept of an Algorithm
	Slide 16: Formal Definition of Algorithm
	Slide 17: The Abstract Nature of Algorithms
	Slide 18: Algorithm Representation
	Slide 19: Designing a Pseudocode Language
	Slide 20: Pseudocode Primitives
	Slide 21: Pseudocode Primitives
	Slide 22: Pseudocode Primitives
	Slide 23: Pseudocode Primitives
	Slide 24: The procedure Greetings in pseudocode
	Slide 25: Pseudocode Primitives
	Slide 26: Algorithm Discovery
	Slide 27: Getting a Foot in the Door
	Slide 28: Ages of Children Problem
	Slide 29: Iterative Structures
	Slide 30: Iterative Structures
	Slide 31: Components of repetitive control
	Slide 32: Iterative Structures
	Slide 33: The while loop structure
	Slide 34: The repeat loop structure
	Slide 35: Sorting the list Fred, Alex, Diana, Byron, and Carol alphabetically
	Slide 36: The insertion sort algorithm expressed in pseudocode
	Slide 37
	Slide 38: Recursive Structures
	Slide 39: Applying our strategy to search a list for the entry John
	Slide 40: A first draft of the binary search technique
	Slide 41: The binary search algorithm in pseudocode
	Slide 42: Recursively Searching
	Slide 43: Second Recursive Search
	Slide 44: Second Recursive Search, Second Snapshot
	Slide 45
	Slide 46: Recursive Control
	Slide 47: Correctness and Efficiency
	Slide 48: Applying the insertion sort in a worst-case situation
	Slide 49: Graph of the worst-case analysis of the insertion sort algorithm
	Slide 50: Graph of the worst-case analysis of the binary search algorithm
	Slide 51: Software Verification
	Slide 52: Chain Separating Problem
	Slide 53: Separating the chain using only three cuts
	Slide 54: Solving the problem with only one cut
	Slide 55: The assertions associated with a typical while structure
	Slide 56

