BLM5207 Arithmetic & Logic Unit
Computer Organization

Does the calculations
Prof. Dr. Nizamettin AYDIN » Everything else in the computer is there to
naydin@vildiz.edu.tr service this unit

http://www3.yildiz.edu.tr/~naydin Handles integers
May handle floating point (real) numbers

» May be separate FPU (maths co-processor)
» May be on chip separate FPU (486DX +)

Computer Arithmetic

1 2
ALU Inputs and Outputs Integer Representation
« Only have 0 & 1 to represent everything
« Positive numbers stored in binary
—e.g. 41=00101001
Contl _ * No mlqus sign
ALU No period
« Sign-Magnitude
Registers_’ Registers o TWO’S Complement
2
3 4
Sign-Magnitude Two’s Complement
« Left most bit is sign bi. « +3=00000011
» 0 means positive » +2 =00000010
+ 1 means negative Ezi a ifa,-0 + +1=00000001
+ +18 =00010010 Asy e R +0 = 00000000
+ -18=10010010 & "™ . -1=11111111
* Problems « -2=11111110 n-2
— Need to consider both . 3211111161 2" a, , + Z 2'a,
sign and magnitude in i=0
arithmetic
— Two representations of
zero (+0 and -0) 5
5 6

Copyright 2000 N. AYDIN. All rights
reserved.

mailto:naydin@yildiz.edu.tr

Representation and Arithmetic

CharaCterisucs or TWos COoImplement

Range 2 thuough 271 — 1

Number of Representations

of Zero Co

an unsigned infeger.

Take the Boolean complement of each bit of the corresponding
Negation positive number, then add 1 to the resulting bit pattern viewed as

L LB L of the original sign bit.

Add additional bit positions to the left and fill in with the value

If two numbers with the same sign (both positive or both
Overflow Rule

has the opposite sign

negative) are added, then overflow occurs if and only if the result

Subtraction Rule

to A

To subtract B from A, take the twos complement of B and add it

Benefits

One representation of zero
Arithmetic works easily (see later)
Negating is fairly easy

—3=00000011
— Boolean complement gives 11111100
—Add 1to LSB 11111101

7 8
Negation Special Case 1 Negation Special Case 2
« 0= 00000000 « -128 = 10000000
« Bitwise not 11111111 * bitwise not 01111111
+ Add 1to LSB +1 + Add 1to LSB +1
* Result 1 00000000 * Result 10000000
« Overflow is ignored, so: * So:
«-0=0V « -(-128)=-128 X
+ Monitor MSB (sign bit)
« It should change during negation
[o] 10
9 10
Range of Numbers Conversion Between Lengths
* 8 bit 2s complement + Positive number pack with leading zeros
+127=01111111=27-1 . +18= 00010010
- 128 = 10000000 = -2f « +18 = 00000000 00010010
* 16 bit 2s complement « Negative numbers pack with leading ones
— +32767=011111111 11111111 =2%-1 . .18= 10010010
-32768 = 100000000 00000000 = -215
+ -18=11111111 10010010
* i.e. pack with MSB (sign bit)
11 12
11 12

Copyright 2000 N. AYDIN. All rights
reserved.

Fixed-Point Representation

Number representation discussed so far also

referred as fixed point.

— Because the radix point (binary point) is fixed and
assumed to be to the right of the rightmost digit
(least significant digit).

Integer Arithmetic

* Negation:
— In sign magnitude, simply invert the sign bit.
— In twos complement:

« Apply twos complement operation (take bitwise
complementincluding sign bit, and add 1)

13 14
13 14
Addition and Subtraction Addition and Subtraction
 Normal binary addition « Overflow rule
« Monitor sign bit for overflow — If two numbers are added and they are both positive
or both negative, then overflow occurs if and only
if the result has the opposite sign
« Take twos complement of subtrahend and add
o _mlnuegld . « Subtraction rule
—iea-b=a+(-
(-b) — To subtract one number(subrahend) from another
(minuhend), take twos complement (negation) of
 So we only need addition and complement the subtrahend and add it to the minuhend
circuits
18 168
15 16
AUJAItIon or Numioers)])
. . Subtraction of Numbers in Twos Complement Representation (M —S)
in Twos Complement Representation
1001 = =7 1100 = —4 o0i0 = 2 ool = 0
#0101 = 5 +0100 = 4 s L
1110 = -2 10000 = 0 N L
@D 05 (©) 4+ (1) il I i1
1001 =5 = 1110
0011 = 3 1100 = —4 011 = =5 0101 = 5
+0100 = 4 +1111 = =1 +1110 = =2 +0010 = 2
0111 = 7 11011 = =5 gioo1 = L=
(e) (+3) + (+4) (d) () + (1) () M ==5 = 1011 (d) M =5 = 0101
5=2=0010 s =2 = 1110
-5 = 1110 -5 = 0010
0101 = 5 1001 = =7 R
+0100 = 4 +1010 = = s R
1001 = overflow 10011 = overflow 1110 = Overflow 10110 = Overflow
(&) 5 + (+) HED+(0) (&) M= 7=o0111 (£) M = =6 = 1010
5 =<7 =1001 s = 4=0100
-5 = 0111 -5 = 1100
1Z 18
17 18

Copyright 2000 N. AYDIN. All rights

reserved.

o

| B Register ' | A Register '

Complementer

Hardware for Addition and Subtraction

Multiplication

» Complex

» Work out partial product for each digit
« Take care with place value (column)

+ Add partial products

19 20
19 20
Multiplication Example Unsigned Binary Multiplication
. 1011 Multiplicand (11 dec) RN K
e x1101 Multiplier (13 dec)
. 1011 Partial products
) . L. ‘ mBlf Adder Add Shift and Add ‘
+ 0000 Note: if multiplier bit is 1 copy Comil Logis
+ 1011 multiplicand (place value) ‘ Shit Right
- 1011 otherwise zero ﬁ o] ‘/ o]
+ 10001111 Product (143 dec) - 5
 Note: need double length result () Block Disgram
21 22
21 22
- FTOWCITAT T TOT OTTSIgTIET BITTar
Execution of Example T Y
Multiplication
c A o} M Ta o
0 0000 1101 1011 Initial values o Naigr
0 1011 1101 1011 Add } First
0 0101 1110 1011 Shift Cycle
Second
0 0010 1111 1011 Shift } cyvele
0 1101 1111 1011 add } Third
0 0110 1111 1011 shift Cycle
1 0001 1111 1011 Add } Fourth Product
0 1000 1111 1011 Shift Cycle inAQ
23 24
23 24

Copyright 2000 N. AYDIN. All rights
reserved.

Multiplying Negative Numbers

+ This does not work!
+ Solution 1

— Convert to positive if required

— Multiply as above

— If signs were different, negate answer
+ Solution 2

— Booth’s algorithm

Booth’s Algorithm

n
ultipl

Arithmetic Shift
Right: A, Q. Q.

Count__ Count - |

25 26
25 26
Example of Booth’s Algorithm Division
« More complex than multiplication
A Q Q-1 M . i 1
0000 0011 0 0111 Initial Values NeQatlve numbers are rea”y bad
) + Based on long division
1001 0011 0 0111 A A - M } First
11400 1001 1 0111 Shift Cycle
. Second
1110 0100 1 0111 Shift } cyele
0101 0100 1 0111 A A+ M} Third
0010 1010 0 0111 Shift Cycle
0001 0101 0 0111 shift }- Fourth
Cycle
27 28

27

28

Division of Unsigned Binary Integers

00001101 Quotient

Divisor— 101110010011
1011
001110
1011

001111
1011 .
100 Remainder

Dividend

Partial
Remainders

20

Flowchart for Unsigned Binary Division

M Divisoe
Q- Divkleond
Count - 0

20

29

Copyright 2000 N. AYDIN. All rights
reserved.

30

Example Real Numbers
; i T e * Numbers with fractions
+ Could be done in pure binary
= Kesr —1001.1010 = 24 + 20 +2-1 + 239,625
Subwract Ad + Where is the binary point?
Sobirct Add * Fixed?
e — Very limited
o s R Moving?
2R — How do you show where it is?
21
31 32
Floating Point
+ 123 000 000 000 000 sgnol
significan: - B bil - 28 L
123 x 1014 \T ‘ biased exponent ‘ significand
(a) Format
e +/- sianifi exponent
+ 0.0000000000000123 J- significand x 2
« Misnomer
1.23 X 1014 « Point is actually fixed between sign bit and
body of mantissa
« Exponent indicates place value (point position)
23
33 34
Floating Point Examples Signs for Floating Point
» Mantissa is stored in 2s complement
sgmemd e . « Exponent is in excess or biased notation
‘ biased exponent e — e.g. Excess (bias) 128 means
(a) Bommat — 8 bit exponent field
— Pure value range 0-255
e S » Subtract 128 to get correct value
1.1010001 x ;fuf:u = 1 10010011 1010001000 00000 = —1.638125 x ;f;u Range -128 to +127
e T T e e 1 o X I
(b) Examples
25
35 36

Copyright 2000 N. AYDIN. All rights
reserved.

Normalization

* FP numbers are usually normalized

+ i.e. exponent is adjusted so that leading bit
(MSB) of mantissa is 1

« Since it is always 1 there is no need to store it

* (c.f. Scientific notation where numbers are
normalized to give a single digit before the
decimal point

. e.g.3.123 x 103)

FP Ranges

* For a 32 bit number
— 8 bit exponent
— +/- 2?56~ 1.5 x 1077
» Accuracy
— The effect of changing Isb of mantissa
— 23 bit mantissa 2~ 1.2 x 10”7
— About 6 decimal places

37 38
37 38
Expressible Numbers Density of Floating Point Numbers
y o] 0 n 2n 4n
29 40
39 40
IEEE 754 IEEE 754 Formats
« Standard for floating point storage
» 32 and 64 bit standards dm o
bit - b
+ 8 and 11 bit exponent respectively \T s fraction
+ Extended formats (both mantissa and exponent) (o) Single foumat
for intermediate results
S5l a—Ilbil 52 bil
ff mes] P
(b) Double format
Al 42
41 42

Copyright 2000 N. AYDIN. All rights
reserved.

meerpretaton or reee 794 Floating-rFoint
IEEE 754 Format Parameters P e
Numbers
Format Single Precision (32 bits) Double Precision (64 bits)

Parameter Single Single Estended Double Double Estended Sign ?2;::“ Fraction Value Sign Ef:,;f" Fraction Value
Word width (bits) 2 243 5 >7 positive 2210 0 0 0 0 [} [} [0
Exponent width (bits) 8 211 1 215 TR B 1w =L g U =0
Expotent bias 17 uaspecified 1023 unspecified pl"“%m“' - 0 0 = g 0 =
Maximnm exponent 17 2103 1023 >16383 mmmj-uﬁ‘ml) ! ! J ! ¢ J

quiet NaN Oorl =0 NaN Oorl =0 NaN
Minimuan exposent -l -l e =-l63s spuingNaN | Oorl | 355(ally) | =0 NaN Dorl |347¢ally| =0 NaN
Number renge (base 10) 10°% 107 uaspecified 10 104 unspecified positive
Sienificand width (bit)* » - 5 a3 normalized 0 0<e<255 f 26171(]) 0 O<e <247 7 2131 £
Number of exponents 254 uaspecified 2046 unspecified feeative
Number of fractions il nnspecified 2 unspecified tonmalized 1 0<e<253 f 21701 1 0<e<2M47 H -1 1)
Number of values 198 %23 unspecified 199 x 283 unspecified ;z:::
0 0 f=0 i (113} 0 0 f=0 105
* not including implied bit negative
- 1 0 f=0 #1350 5) 1 0 f=0 | 22N
43 44
43 44
FI04lNg-FOINt NUMmpers ana Aririmetic A TIOatimng-point operatiorn may proauce
Operations one of these conditions:
Floating Point Numbers Arithmetic Operations
R) « Exponent overflow:
Yo, Bl X=¥ (X, x B) x 5‘f’ AR — A positive exponent exceeds the maximum possible expo-nent value. In some
! ' systems, this may be designated as +oo or —oo.
Xnt =(En BN « Exponent underflow:
5=[L‘l B — A negative exponent is less than the minimum possible exponent value (e.g., —
¥ iy 200 is less than —127). This means that the number is too small to be
represented, and it may be reported as 0.
Frample « Significand underflow:
X ’O'f x 10 ,.1%0 — In the process of aligning significands, digits may flow off the right end of the
FEO2aon=200 significand. Some form of rounding is required
AN T - Significand overflow:
XxY=03x02)x 0.06 % 10° = 6000 The addition of two significands of the same sign may result in a carry out of the
X+¥=(03+02 %107 = 15x 107 =015 most significant bit. This can be fixed by realignment.
45 46
45 46
FP Arithmetic +/- FP Arithmetic +/- Phase 1

+ Check for zeros * Zero check

« Align significands (adjusting exponents)

+ Add or subtract significands Because addition and subtraction are identical

« Normalize result except for a sign change, the process begins by

changing the sign of the subtrahend if it is a
subtract operation. Next, if either operand is 0,
the other is reported as the result.
yivi 48
47 48

Copyright 2000 N. AYDIN. All rights

reserved.

FP Arithmetic +/- Phase 2

« Significand alignment

» Numbers needs to be manipulated so that the two
exponents are equal.

— To see the need for aligning exponents, consider the following decimal addition:

~ (123 % 10°) + (456 x 102)

— Clearly, we cannot just add the significands. The digits must first be set into
equivalent positions, that is, the 4 of the second number must be aligned with the
3 of the first. Under these conditions, the two exponents will be equal,which is
the mathematical condition under which two numbers in this form can be added.
Thus,

— (123 10°) + (456 x 102) = (123 x 10°) + (4.56 x 10°) = 127.56x10°

FP Arithmetic +/- Phase 2

Alignment may be achieved by shifting either the smaller number to
the right (increasing its exponent) or shifting the larger number to the
left. Because either operation may result in the loss of digits, it is the
smaller number that is shifted; any digits that are lost are therefore of
relatively small significance. The alignment is achieved by repeatedly
shifting the magnitude portion of the significand right 1 digit and
incrementing the exponent until the two exponents are equal. (Note
that if the implied base is 16, a shift of 1 digit is a shift of 4 bits.) If
this process results in a 0 value for the significand, then the other
number is reported as the result. Thus, if two numbers have exponents
that differ significantly, the lesser number is lost.

49 a0
49 50
FP Arithmetic +/- Phase 3 FP Arithmetic +/- Phase 4
« Addition Normalization
The two significands are added together, taking Normalization consists of shifting significand
into account their signs. Because the signs may digits left until the most significant digit (bit, or 4
differ, the result may be 0. There is also the bits for base-16 exponent) is nonzero. Each shift
possibility of significand overflow by 1 digit. If causes a decrement of the exponent and thus
s0, the significand of the result is shifted right could cause an exponent underflow. Finally, the
and the exponent is incremented. An exponent result must be rounded off and then reported. We
overflow could occur as a result; this would be defer a discussion of rounding until after a
reported and the operation halted. discussion of multiplication and division.
51 %)
51 52
FP Addition & Subtraction Flowchart FP Arithmetic x/+
* Check for zero
 Add/subtract exponents
« Multiply/divide significands (watch sign)
» Normalize
* Round
« All intermediate results should be in double
length storage
54

Copyright 2000 N. AYDIN. All rights
reserved.

54

Floating Point Multiplication

Floating Point Division

56

55

57

Copyright 2000 N. AYDIN. All rights
reserved.

10

	Slide 1: BLM5207 Computer Organization
	Slide 2: Arithmetic & Logic Unit
	Slide 3: ALU Inputs and Outputs
	Slide 4: Integer Representation
	Slide 5: Sign-Magnitude
	Slide 6: Two’s Complement
	Slide 7: Characteristics of Twos Complement Representation and Arithmetic
	Slide 8: Benefits
	Slide 9: Negation Special Case 1
	Slide 10: Negation Special Case 2
	Slide 11: Range of Numbers
	Slide 12: Conversion Between Lengths
	Slide 13: Fixed-Point Representation
	Slide 14: Integer Arithmetic
	Slide 15: Addition and Subtraction
	Slide 16: Addition and Subtraction
	Slide 17: Addition of Numbers in Twos Complement Representation
	Slide 18: Subtraction of Numbers in Twos Complement Representation (M – S)
	Slide 19: Hardware for Addition and Subtraction
	Slide 20: Multiplication
	Slide 21: Multiplication Example
	Slide 22: Unsigned Binary Multiplication
	Slide 23: Execution of Example
	Slide 24: Flowchart for Unsigned Binary Multiplication
	Slide 25: Multiplying Negative Numbers
	Slide 26: Booth’s Algorithm
	Slide 27: Example of Booth’s Algorithm
	Slide 28: Division
	Slide 29: Division of Unsigned Binary Integers
	Slide 30: Flowchart for Unsigned Binary Division
	Slide 31: Example
	Slide 32: Real Numbers
	Slide 33
	Slide 34: Floating Point
	Slide 35: Floating Point Examples
	Slide 36: Signs for Floating Point
	Slide 37: Normalization
	Slide 38: FP Ranges
	Slide 39: Expressible Numbers
	Slide 40: Density of Floating Point Numbers
	Slide 41: IEEE 754
	Slide 42: IEEE 754 Formats
	Slide 43: IEEE 754 Format Parameters
	Slide 44: Interpretation of IEEE 754 Floating-Point Numbers
	Slide 45: Floating-Point Numbers and Arithmetic Operations
	Slide 46: A floating-point operation may produce one of these conditions:
	Slide 47: FP Arithmetic +/-
	Slide 48: FP Arithmetic +/- Phase 1
	Slide 49: FP Arithmetic +/- Phase 2
	Slide 50: FP Arithmetic +/- Phase 2
	Slide 51: FP Arithmetic +/- Phase 3
	Slide 52: FP Arithmetic +/- Phase 4
	Slide 53: FP Addition & Subtraction Flowchart
	Slide 54: FP Arithmetic x/
	Slide 55: Floating Point Multiplication
	Slide 56: Floating Point Division
	Slide 57

