

1

3

Sign-Magnitude

- Left most bit is sign bit
- 0 means positive
- 1 means negative
- $+18=00010010$
- $-18=10010010$

- Problems
- Need to consider both sign and magnitude in arithmetic
- Two representations of zero (+0 and -0) 5

Arithmetic \& Logic Unit

- Does the calculations
- Everything else in the computer is there to service this unit
- Handles integers
- May handle floating point (real) numbers
- May be separate FPU (maths co-processor)
- May be on chip separate FPU (486DX +)

2

Integer Representation

- Only have 0 \& 1 to represent everything
- Positive numbers stored in binary
- e.g. 41=00101001
- No minus sign
- No period
- Sign-Magnitude
- Two's complement

4

Two's Complement

- $+3=00000011$
- $+2=00000010$
- +1 = 00000001
- $+0=00000000$
- $-1=11111111$
- $-2=11111110 \quad 2^{n-1} a_{n-1}+\sum_{i=0}^{n-2} 2^{i} a_{i}$

7

Benefits

- One representation of zero
- Arithmetic works easily (see later)
- Negating is fairly easy
$-3=00000011$
- Boolean complement gives 11111100
- Add 1 to LSB

11111101

8

Negation Special Case 2

- $-128=10000000$
- bitwise not 01111111
- Add 1 to LSB +1
- Result 10000000
- So:
- $-(-128)=-128 \quad \mathrm{X}$
- Monitor MSB (sign bit)
- It should change during negation

10

Range of Numbers

- 8 bit 2 s complement
$\begin{aligned}-+127 & =01111111=2^{7}-1 \\ --128=10000000 & =-2^{7}\end{aligned}$
- 16 bit 2 s complement
$-+32767=01111111111111111=2^{15}-1$
$--32768=10000000000000000=-2^{15}$

Conversion Between Lengths

- Positive number pack with leading zeros
- $+18=00010010$
- $+18=0000000000010010$
- Negative numbers pack with leading ones
- $-18=10010010$
- $-18=1111111110010010$
- i.e. pack with MSB (sign bit)

Fixed-Point Representation

- Number representation discussed so far also referred as fixed point.
- Because the radix point (binary point) is fixed and assumed to be to the right of the rightmost digit (least significant digit)

13

Addition and Subtraction

- Normal binary addition
- Monitor sign bit for overflow
- Take twos complement of subtrahend and add to minuend
- i.e. $a-b=a+(-b)$
- So we only need addition and complement circuits
- Subtraction rule
- To subtract one number(subrahend) from another (minuhend), take twos complement (negation) of the subtrahend and add it to the minuhend
- Overflow rule
- If two numbers are added and they are both positive or both negative, then overflow occurs if and only if the result has the opposite sign

Addition and Subtraction

Negation:

- In sign magnitude, simply invert the sign bit.
- In twos complement:
- Apply twos complement operation (take bitwise complement including sign bit, and add 1)

Integer Arithmetic

\qquad

Subtraction of Numbers in Twos Complement Representation (M-S)

19

Multiplication

- Complex
- Work out partial product for each digit
- Take care with place value (column)
- Add partial products

Multiplication Example

- 1011 Multiplicand (11 dec)
- x 1101 Multiplier (13 dec)
- 1011 Partial products
- 0000 Note: if multiplier bit is 1 copy
- 1011 multiplicand (place value)
- 1011 otherwise zero
- 10001111 Product (143 dec)
- Note: need double length result

21

Unsigned Binary Multiplication

23

FIowCnart Ior Unsigned binary Multiplication

24

Multiplying Negative Numbers

- This does not work!
- Solution 1
- Convert to positive if required
- Multiply as above
- If signs were different, negate answer
- Solution 2
- Booth's algorithm

26

27

Division

- More complex than multiplication
- Negative numbers are really bad!
- Based on long division

Flowchart for Unsigned Binary Division

30

31

33

Floating Point
sign of
significand

- +/- .significand x $2^{\text {exponent }}$
- Misnomer
- Point is actually fixed between sign bit and body of mantissa
- Exponent indicates place value (point position)

34

35

Signs for Floating Point

- Mantissa is stored in 2 s complement
- Exponent is in excess or biased notation
- e.g. Excess (bias) 128 means
- 8 bit exponent field
- Pure value range 0-255
- Subtract 128 to get correct value
- Range - 128 to +127

Normalization

- FP numbers are usually normalized
- i.e. exponent is adjusted so that leading bit (MSB) of mantissa is 1
- Since it is always 1 there is no need to store it
- (c.f. Scientific notation where numbers are normalized to give a single digit before the decimal point
- e.g. 3.123×10^{3})

37

39

FP Ranges

- For a 32 bit number
- 8 bit exponent
$-+/-2^{256} \approx 1.5 \times 10^{77}$
- Accuracy
- The effect of changing lsb of mantissa
-23 bit mantissa $2^{-23} \approx 1.2 \times 10^{-7}$
- About 6 decimal places

IEEE 754

- Standard for floating point storage
- 32 and 64 bit standards
- 8 and 11 bit exponent respectively
- Extended formats (both mantissa and exponent) for intermediate results

IEEE 754 Formats

42

Parameter	75	rmat	rame	
	Format			
	Single	Single Extended	Double	Double Extended
Word width (bits)	32	≥ 43	64	≥ 79
Exponent width (bits)	8	≥ 11	11	≥ 15
Exponent bias	127	unspecified	1023	unspecified
Maximum exponent	127	≥ 1023	1023	≥ 16383
Minimum exponent	-126	s-1022	-1022	<-16382
Number range (base 10)	$10^{-38} \cdot 10^{+38}$	unspecified	$10^{-308} \cdot 10^{+308}$	unspecified
Significand width (bits) ${ }^{\text {z }}$	23	≥ 31	52	≥ 63
Number of exponents	254	unspecified	2046	unspecified
Number of fractions	2^{23}	unspecified	2^{52}	unspecified
Number of values	1.98×2^{31}	unspecified	1.99×2^{63}	unspecified
* not including implied bit				

43

45

FP Arithmetic +/-

- Check for zeros
- Align significands (adjusting exponents)
- Add or subtract significands
- Normalize result

FP Arithmetic +/-

Phase 1

- Zero check

Because addition and subtraction are identical except for a sign change, the process begins by changing the sign of the subtrahend if it is a subtract operation. Next, if either operand is 0 , the other is reported as the result.

FP Arithmetic +/-

Phase 2

- Significand alignment
- Numbers needs to be manipulated so that the two exponents are equal.
- To see the need for aligning exponents, consider the following decimal addition: $-\left(123 \times 10^{0}\right)+\left(456 \times 10^{-2}\right)$
- Clearly, we cannot just add the significands. The digits must first be set into equivalent positions, that is, the 4 of the second number must be aligned with the 3 of the first. Under these conditions, the two exponents will be equal, which is the mathematical condition under which two numbers in this form can be added. Thus,
$\left(123 \times 10^{0}\right)+\left(456 \times 10^{-2}\right)=\left(123 \times 10^{0}\right)+\left(4.56 \times 10^{0}\right)=127.56 \times 10^{0}$

49

FP Arithmetic +/- Phase 3

- Addition

The two significands are added together, taking into account their signs. Because the signs may differ, the result may be 0 . There is also the possibility of significand overflow by 1 digit. If so, the significand of the result is shifted right and the exponent is incremented. An exponent overflow could occur as a result; this would be reported and the operation halted.

FP Addition \& Subtraction Flowchart

FP Arithmetic +/-

Phase 4

- Normalization

Normalization consists of shifting significand digits left until the most significant digit (bit, or 4 bits for base-16 exponent) is nonzero. Each shift causes a decrement of the exponent and thus could cause an exponent underflow. Finally, the result must be rounded off and then reported. We defer a discussion of rounding until after a discussion of multiplication and division.

FP Arithmetic \mathbf{x} / \div

- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize
- Round
- All intermediate results should be in double length storage

\square

