

- Only have 0 & 1 to represent everything
- Positive numbers stored in binary - e.g. 41=00101001
- No minus sign
- No period
- Sign-Magnitude
- Two's complement

6

Copyright 2000 N. AYDIN. All rights reserved.

Characteristics of Twos Complement Representation and Arithmetic

	-2^{n-1} through $2^{n-1} - 1$
Number of Representations of Zero	One
vegation	Take the Boolean complement of each bit of the corresponding positive number, then add 1 to the resulting bit pattern viewed as an unsigned integer.
Expansion of Bit Length	Add additional bit positions to the left and fill in with the value of the original sign bit.
Overflow Rule	If two numbers with the same sign (both positive or both negative) are added, then overflow occurs if and only if the result has the opposite sign.
Subtraction Rule	To subtract B from A , take the twos complement of B and add it to A .

7

Benefits

11111100

- One representation of zero
- Arithmetic works easily (see later)
- Negating is fairly easy
 3 = 00000011
 Boolean complement gives
 - Add 1 to LSB 11111101

8

Negation Special Case 1

- 0 = 00000000
- Bitwise not 11111111
- Add 1 to LSB +1
- Result 1 0000000
- Overflow is ignored, so:
- - 0 = 0 $\sqrt{}$

9

Negation Special Case 2

- -128 = 10000000
- bitwise not 01111111
- Add 1 to LSB +1
- Result 1000000
- So:
- -(-128) = -128 X
- Monitor MSB (sign bit)
- It should change during negation

10

Range of Numbers

- 8 bit 2s complement $-+127 = 01111111 = 2^7 - 1$
 - $-128 = 10000000 = -2^{7}$
- 16 bit 2s complement
 - $-+32767 = 01111111111111111111 = 2^{15} 1$
 - $-32768 = 100000000 \ 0000000 = -2^{15}$

11

Conversion Between Lengths

- Positive number pack with leading zeros
- +18 = 00010010
- $+18 = 00000000\ 00010010$
- Negative numbers pack with leading ones
- -18 = 10010010
- -18 = 11111111 10010010
- i.e. pack with MSB (sign bit)

- Number representation discussed so far also referred as fixed point.
 - Because the radix point (binary point) is fixed and assumed to be to the right of the rightmost digit (least significant digit).

Integer Arithmetic

- Negation:
 - In sign magnitude, simply invert the sign bit.
 - In twos complement:
 - Apply twos complement operation (take bitwise complement including sign bit, and add 1)

14

13

Addition and Subtraction

- Normal binary addition
- Monitor sign bit for overflow
- Take twos complement of subtrahend and add to minuend

- i.e. a - b = a + (-b)

• So we only need addition and complement circuits

15

• Overflow rule

 If two numbers are added and they are both positive or both negative, then overflow occurs if and only if the result has the opposite sign

• Subtraction rule

 To subtract one number(subrahend) from another (minuhend), take twos complement (negation) of the subtrahend and add it to the minuhend

16

$\begin{array}{rrrr} 1001 &= -7 \\ + \underline{0101} &= 5 \\ 1110 &= -2 \end{array}$	$\begin{array}{rrrrr} 1100 &= -4 \\ +0100 &= 4 \\ 10000 &= 0 \end{array}$
(a) $(-7) + (+5)$	(b) (-4) + (+4)
0011 = 3	1100 = -4
$+\frac{0100}{0111} = 4$ (c) (+3) + (+4)	$\begin{array}{r} +1111 = -1 \\ 11011 = -5 \\ (d) (-4) + (-1) \end{array}$
0101 = 5 +0100 = 4	1001 = -7 +1010 = -6
$\frac{0100}{1001} = 0$ verflow	10011 = Overflow

17

0010 = 2	0101 = 5
$+\frac{1001}{1011} = -7$	$+\frac{1110}{10011} = -2$
-5	$\frac{10011}{1} = 3$
(a) $M = 2 = 0010$	(b) $M = 5 = 0101$
S = 7 = 0111	S = 2 = 0010
-S = 1001	-S = 1110
1011 = -5 + <u>1110</u> = -2 <u>11001</u> = -7	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
(c) M =-5 = 1011	(d) M = 5 = 0101
s = 2 = 0010	S =-2 = 1110
-S = 1110	-S = 0010
0111 = 7 + <u>0111</u> = 7 1110 = Overflow	$ \begin{array}{r} 1010 = -6 \\ +1100 = -4 \\ 10110 = 0 \\ \text{verflow} \end{array} $
(e) $M = 7 = 0111$	(f) $M = -6 = 1010$
S = -7 = 1001	S = 4 = 0100
-S = 0111	-S = 1100

18

Copyright 2000 N. AYDIN. All rights reserved.

Multiplication

- Complex
- Work out partial product for each digit
- Take care with place value (column)
- Add partial products

20

21

	Execution of Example							
C 0		Q 1101	M 1011	Initial Values				
0	1011 0101	1101 1110	1011 1011	Add } First Shift } Cycle				
0	0010	1111	1011	Shift } Second Cycle				
0 0	1101 0110	$\begin{array}{c} 1111\\ 1111\end{array}$	1011 1011	Add } Third Shift } Cycle				
1 0	0001 1000	$\begin{array}{c} 1111\\ 1111 \end{array}$	1011 1011	Add } Fourth Shift } Cycle				

23

- This does not work!
- Solution 1
 - Convert to positive if required
 - Multiply as above
 - If signs were different, negate answer
- Solution 2
 - Booth's algorithm

Division

More complex than multiplicationNegative numbers are really bad!

· Based on long division

26

28

25

E	xamr	ole o	f Boo	oth's Algorithm
	ľ			8
A 0000	Q 0011	Q_1 0	M 0111	Initial Values
1001 1100	0011 1001	0 1	0111 0111	A A - M First Shift Cycle
1110	0100	1	0111	Shift } Second Cycle
0101	0100	1	0111	A A + M } Third Shift Cycle
0010	1010	0	0111	Shift) Cycle
0001	0101	0	0111	Shift } Fourth Cycle
				27

27

A 0000	Q 0111	M = 0011 Initial value	A 0000	Q 0111	M = 110 Initial value
	1110	Shift		1110	Shift
0000	1110	Subtract Restore		1110	Add Restore
0001	1100	Shift	0001	1100	Shift
1110 0001	1100	Subtract		1100	Add
		Restore			Restore
	1000	Shift	0011 0000	1000	Shift
0000	1001	Subtract Set Q ₀ = 1	0000	1001	Add Set $Q_0 = 1$
0001	0010	Shift			Shift
1110 0001	0010	Subtract Restore		0010	Add Restore
	(a) (7)/(3)		1000	(b) (7)/(-3	

Normalization

- FP numbers are usually normalized
- i.e. exponent is adjusted so that leading bit (MSB) of mantissa is 1
- Since it is always 1 there is no need to store it
- (c.f. Scientific notation where numbers are normalized to give a single digit before the decimal point
- e.g. 3.123 x 10³)

37

FP Ranges

For a 32 bit number
 – 8 bit exponent

 $- \pm 2^{256} \approx 1.5 \times 10^{77}$

- Accuracy
 - The effect of changing lsb of mantissa
 - -23 bit mantissa $2^{-23} \approx 1.2 \text{ x } 10^{-7}$
 - About 6 decimal places

38

- Standard for floating point storage
- 32 and 64 bit standards
- 8 and 11 bit exponent respectively
- Extended formats (both mantissa and exponent) for intermediate results

Copyright 2000 N. AYDIN. All rights reserved.

	Format						
Parameter	Single	Single Extended	Double	Double Extended			
Word width (bits)	32	≥ 43	64	≥ 79			
Exponent width (bits)	8	≥11	11	≥ 15			
Exponent bias	127	unspecified	1023	unspecified			
Maximum exponent	127	≥ 1023	1023	≥ 16383			
Minimum exponent	-126	≤ -1022	-1022	≤ -16382			
Number range (base 10)	10-38, 10+38	unspecified	10-308, 10+308	unspecified			
Significand width (bits)*	23	≥ 31	52	≥ 63			
Number of exponents	254	unspecified	2046	unspecified			
Number of fractions	223	unspecified	252	unspecified			
Number of values	1.98×2^{31}	unspecified	1.99×2^{63}	unspecified			

FP Arithmetic +/-

• Align significands (adjusting exponents)

· Add or subtract significands

45

Interpretation of IEEE 754 Floating-Point Numbers

	Single Precision (32 bits)				Double Precision (64 bits)			
	Sign	Biased exponent	Fraction	Value	Sign	Biased exponent	Fraction	Value
positive zero	0	0	0	0	0	0	0	0
negative zero	1	0	0	-0	1	0	0	-0
plus infinity	0	255 (all 1s)	0	œ	0	2047 (all 1s)	0	~
minus infinity	1	255 (all 1s)	0	_00	1	2047 (all 1s)	0	_00
quiet NaN	0 or 1	255 (all 1s)	≠ 0	NaN	0 or 1	2047 (all 1s)	≠ 0	NaN
signaling NaN	0 or 1	255 (all 1s)	≠0	NaN	0 or 1	2047 (all 1s)	≠0	NaN
positive normalized nonzero	0	0 < e < 255	f	2 ^{e-127} (1.f)	0	0 < e < 2047	f	2 ^{e-1023} (1.f)
negative normalized nonzero	1	0 < e < 255	f	-2 ^{e-127} (1.f)	1	0 < e < 2047	f	-2 ^{e-1023} (1.f
positive denormalized	0	0	f≠0	2*-126(0.f)	0	0	f≠0	2*-1022(0.f)
negative denormalized	1	0	f≠0	-2 ^{e-126} (0.f)	1	0	f≠0	-2 ^{e-1022} (0.f

44

46

FP Arithmetic +/-

Zero check

Because addition and subtraction are identical except for a sign change, the process begins by changing the sign of the subtrahend if it is a subtract operation. Next, if either operand is 0, the other is reported as the result.

Phase 1

47

Check for zeros

• Normalize result

FP Arithmetic +/-

Phase 3

Addition

The two significands are added together, taking into account their signs. Because the signs may differ, the result may be 0. There is also the possibility of significand overflow by 1 digit. If so, the significand of the result is shifted right and the exponent is incremented. An exponent overflow could occur as a result: this would be reported and the operation halted.

51

Phase 4

Phase 2

Normalization

Normalization consists of shifting significand digits left until the most significant digit (bit, or 4 bits for base-16 exponent) is nonzero. Each shift causes a decrement of the exponent and thus could cause an exponent underflow. Finally, the result must be rounded off and then reported. We defer a discussion of rounding until after a discussion of multiplication and division.

50

FP Addition & Subtraction Flowchart

53

FP Arithmetic x/÷

- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize
- Round
- All intermediate results should be in double length storage

