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Computer Arithmetic
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Arithmetic & Logic Unit

• Does the calculations

• Everything else in the computer is there to 

service this unit

• Handles integers

• May handle floating point (real) numbers

• May be separate FPU (maths co-processor)

• May be on chip separate FPU (486DX +)
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ALU Inputs and Outputs

4

Integer Representation

• Only have 0 & 1 to represent everything

• Positive numbers stored in binary

– e.g. 41=00101001

• No minus sign

• No period

• Sign-Magnitude

• Two’s complement
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Sign-Magnitude

• Left most bit is sign bit

• 0 means positive

• 1 means negative

• +18 = 00010010

• -18 = 10010010

• Problems

– Need to consider both 

sign and magnitude in 

arithmetic

– Two representations of 

zero (+0 and -0)
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Two’s Complement

• +3 = 00000011

• +2 = 00000010

• +1 = 00000001

• +0 = 00000000

• -1 = 11111111

• -2 = 11111110

• -3 = 11111101 
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Characteristics of Twos Complement 

Representation and Arithmetic
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Benefits

• One representation of zero

• Arithmetic works easily (see later)

• Negating is fairly easy

– 3 = 00000011

– Boolean complement gives 11111100

– Add 1 to LSB 11111101
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Negation Special Case 1

• 0 =                00000000

• Bitwise not       11111111

• Add 1 to LSB              +1

• Result           1 00000000

• Overflow is ignored, so:

• - 0 = 0 
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Negation Special Case 2

• -128 =           10000000

• bitwise not     01111111

• Add 1 to LSB            +1

• Result            10000000

• So:

• -(-128) = -128   X

• Monitor MSB (sign bit)

• It should change during negation
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Range of Numbers

• 8 bit 2s complement

– +127 = 01111111 = 27 -1

– -128 = 10000000 = -27

• 16 bit 2s complement

– +32767 = 011111111 11111111 = 215 - 1

– -32768 = 100000000 00000000 = -215
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Conversion Between Lengths

• Positive number pack with leading zeros

• +18 =                00010010

• +18 = 00000000 00010010

• Negative numbers pack with leading ones

• -18 =                10010010

• -18 = 11111111 10010010

• i.e. pack with MSB (sign bit)
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Fixed-Point Representation

• Number representation discussed so far also 

referred as fixed point.

– Because the radix point (binary point) is fixed and 

assumed to be to the right of the rightmost digit 

(least significant digit).
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Integer Arithmetic

• Negation:

– In sign magnitude, simply invert the sign bit.

– In twos complement:

• Apply twos complement operation (take bitwise 

complement including  sign bit, and add 1)
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Addition and Subtraction

• Normal binary addition

• Monitor sign bit for overflow

• Take twos complement of subtrahend and add 

to minuend

– i.e. a - b = a + (-b)

• So we only need addition and complement 

circuits
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Addition and Subtraction

• Overflow rule

– If two numbers are added and they are both positive 

or both negative, then overflow occurs if and only 

if the result has the opposite sign

• Subtraction rule

– To subtract one number(subrahend) from another 

(minuhend), take twos complement (negation) of 

the subtrahend and add it to the minuhend
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Addition of Numbers 

in Twos Complement Representation
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Subtraction of Numbers in Twos Complement Representation (M – S)
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Hardware for Addition and Subtraction

20

Multiplication

• Complex

• Work out partial product for each digit

• Take care with place value (column)

• Add partial products

21

Multiplication Example

• 1011   Multiplicand (11 dec)

• x 1101   Multiplier     (13 dec)

• 1011   Partial products

• 0000     Note: if multiplier bit is 1 copy

• 1011 multiplicand (place value)

• 1011 otherwise zero

• 10001111   Product (143 dec)

• Note: need double length result
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Unsigned Binary Multiplication

23

Execution of Example

24

Flowchart for Unsigned Binary 

Multiplication
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Multiplying Negative Numbers

• This does not work!

• Solution 1

– Convert to positive if required

– Multiply as above

– If signs were different, negate answer

• Solution 2

– Booth’s algorithm
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Booth’s Algorithm

27

Example of Booth’s Algorithm
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Division

• More complex than multiplication

• Negative numbers are really bad!

• Based on long division

29

001111

Division of Unsigned Binary Integers

1011

00001101

10010011

1011

001110
1011

1011

100

Quotient

Dividend

Remainder

Partial

Remainders

Divisor
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Flowchart for Unsigned Binary Division
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Example

32

Real Numbers

• Numbers with fractions

• Could be done in pure binary

– 1001.1010 = 24 + 20 +2-1 + 2-3 =9.625

• Where is the binary point?

• Fixed?

– Very limited

• Moving?

– How do you show where it is?

33

• 123 000 000 000 000  

1.23 X 1014

• 0.0000000000000123  

1.23 X 10-14

34

Floating Point

• +/- .significand x 2exponent

• Misnomer

• Point is actually fixed between sign bit and 

body of mantissa

• Exponent indicates place value (point position)

35

Floating Point Examples

36

Signs for Floating Point

• Mantissa is stored in 2s complement

• Exponent is in excess or biased notation

– e.g. Excess (bias) 128 means

– 8 bit exponent field

– Pure value range 0-255

– Subtract 128 to get correct value

– Range -128 to +127

31 32

33 34

35 36



Copyright 2000 N. AYDIN. All rights 

reserved. 7

37

Normalization

• FP numbers are usually normalized

• i.e. exponent is adjusted so that leading bit 

(MSB) of mantissa is 1

• Since it is always 1 there is no need to store it

• (c.f. Scientific notation where numbers are 

normalized to give a single digit before the 

decimal point

• e.g. 3.123 x 103)

38

FP Ranges

• For a 32 bit number

– 8 bit exponent 

– +/- 2256  1.5 x 1077

• Accuracy

– The effect of changing lsb of mantissa

– 23 bit mantissa 2-23  1.2 x 10-7

– About 6 decimal places

39

Expressible Numbers

40

Density of Floating Point Numbers

41

IEEE 754

• Standard for floating point storage

• 32 and 64 bit standards

• 8 and 11 bit exponent respectively

• Extended formats (both mantissa and exponent) 

for intermediate results

42

IEEE 754 Formats

37 38

39 40
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IEEE 754 Format Parameters

44

Interpretation of IEEE 754 Floating-Point 

Numbers

45

Floating-Point Numbers and Arithmetic 

Operations

46

A floating-point operation may produce 

one of these conditions:

• Exponent overflow: 
– A positive exponent exceeds the maximum possible expo-nent value. In some 

systems, this may be designated as +∞ or —∞.

• Exponent underflow: 
– A negative exponent is less than the minimum possible exponent value (e.g., —

200 is less than —127). This means that the number is too small to be 
represented, and it may be reported as 0.

• Significand underflow: 
– In the process of aligning significands, digits may flow off the right end of the 

significand. Some form of rounding is required.

• Significand overflow: 
– The addition of two significands of the same sign may result in a carry out of the 

most significant bit. This can be fixed by realignment.

47

FP Arithmetic +/-

• Check for zeros

• Align significands (adjusting exponents)

• Add or subtract significands

• Normalize result

48

FP Arithmetic +/- Phase 1

• Zero check

Because addition and subtraction are identical 

except for a sign change, the process begins by 

changing the sign of the subtrahend if it is a 

subtract operation. Next, if either operand is 0, 

the other is reported as the result.

43 44

45 46
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FP Arithmetic +/- Phase 2

• Significand alignment

• Numbers needs to be manipulated so that the two 

exponents are equal.
– To see the need for aligning exponents, consider the following decimal addition:

– (123 x 100) + (456 x 10-2)

– Clearly, we cannot just add the significands. The digits must first be set into 

equivalent positions, that is, the 4 of the second number must be aligned with the 

3 of the first. Under these conditions, the two exponents will be equal,which is 

the mathematical condition under which two numbers in this form can be added. 

Thus,

– (123 x 100) + (456 x 10-2) = (123 x 100) + (4.56 x 100) = 127.56x100

50

FP Arithmetic +/- Phase 2

Alignment may be achieved by shifting either the smaller number to 

the right (increasing its exponent) or shifting the larger number to the 
left. Because either operation may result in the loss of digits, it is the 
smaller number that is shifted; any digits that are lost are therefore of 
relatively small significance. The alignment is achieved by repeatedly 
shifting the magnitude portion of the significand right 1 digit and 
incrementing the exponent until the two exponents are equal. (Note 
that if the implied base is 16, a shift of 1 digit is a shift of 4 bits.) If 
this process results in a 0 value for the significand, then the other 
number is reported as the result. Thus, if two numbers have exponents 
that differ significantly, the lesser number is lost.
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FP Arithmetic +/- Phase 3

• Addition

The two significands are added together, taking 

into account their signs. Because the signs may 

differ, the result may be 0. There is also the 

possibility of significand overflow by 1 digit. If 

so, the significand of the result is shifted right 

and the exponent is incremented. An exponent 

overflow could occur as a result; this would be 

reported and the operation halted.
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FP Arithmetic +/- Phase 4

• Normalization

Normalization consists of shifting significand 

digits left until the most significant digit (bit, or 4 

bits for base-16 exponent) is nonzero. Each shift 

causes a decrement of the exponent and thus 

could cause an exponent underflow. Finally, the 

result must be rounded off and then reported. We 

defer a discussion of rounding until after a 

discussion of multiplication and division.

53

FP Addition & Subtraction Flowchart

54

FP Arithmetic x/

• Check for zero

• Add/subtract exponents 

• Multiply/divide significands (watch sign)

• Normalize

• Round

• All intermediate results should be in double 

length storage
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Floating Point Multiplication

56

Floating Point Division

57
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