
Copyright 2000 N. AYDIN. All rights

reserved. 1

BLM5207

Computer Organization

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

Computer Arithmetic

1
2

Arithmetic & Logic Unit

• Does the calculations

• Everything else in the computer is there to

service this unit

• Handles integers

• May handle floating point (real) numbers

• May be separate FPU (maths co-processor)

• May be on chip separate FPU (486DX +)

3

ALU Inputs and Outputs

4

Integer Representation

• Only have 0 & 1 to represent everything

• Positive numbers stored in binary

– e.g. 41=00101001

• No minus sign

• No period

• Sign-Magnitude

• Two’s complement

5

Sign-Magnitude

• Left most bit is sign bit

• 0 means positive

• 1 means negative

• +18 = 00010010

• -18 = 10010010

• Problems

– Need to consider both

sign and magnitude in

arithmetic

– Two representations of

zero (+0 and -0)










=−

=

=

−

−

=

−

−

=





0 if2

0 if2

1

2

0

1

2

0

n

n

i

i

i

n

n

i

i

i

aa

aa

A

6

Two’s Complement

• +3 = 00000011

• +2 = 00000010

• +1 = 00000001

• +0 = 00000000

• -1 = 11111111

• -2 = 11111110

• -3 = 11111101 
−

=

−

− +−
2

0

1

1 22
n

i

i

i

n

n aa

1 2

3 4

5 6

mailto:naydin@yildiz.edu.tr

Copyright 2000 N. AYDIN. All rights

reserved. 2

7

Characteristics of Twos Complement

Representation and Arithmetic

8

Benefits

• One representation of zero

• Arithmetic works easily (see later)

• Negating is fairly easy

– 3 = 00000011

– Boolean complement gives 11111100

– Add 1 to LSB 11111101

9

Negation Special Case 1

• 0 = 00000000

• Bitwise not 11111111

• Add 1 to LSB +1

• Result 1 00000000

• Overflow is ignored, so:

• - 0 = 0 

10

Negation Special Case 2

• -128 = 10000000

• bitwise not 01111111

• Add 1 to LSB +1

• Result 10000000

• So:

• -(-128) = -128 X

• Monitor MSB (sign bit)

• It should change during negation

11

Range of Numbers

• 8 bit 2s complement

– +127 = 01111111 = 27 -1

– -128 = 10000000 = -27

• 16 bit 2s complement

– +32767 = 011111111 11111111 = 215 - 1

– -32768 = 100000000 00000000 = -215

12

Conversion Between Lengths

• Positive number pack with leading zeros

• +18 = 00010010

• +18 = 00000000 00010010

• Negative numbers pack with leading ones

• -18 = 10010010

• -18 = 11111111 10010010

• i.e. pack with MSB (sign bit)

7 8

9 10

11 12

Copyright 2000 N. AYDIN. All rights

reserved. 3

13

Fixed-Point Representation

• Number representation discussed so far also

referred as fixed point.

– Because the radix point (binary point) is fixed and

assumed to be to the right of the rightmost digit

(least significant digit).

14

Integer Arithmetic

• Negation:

– In sign magnitude, simply invert the sign bit.

– In twos complement:

• Apply twos complement operation (take bitwise

complement including sign bit, and add 1)

15

Addition and Subtraction

• Normal binary addition

• Monitor sign bit for overflow

• Take twos complement of subtrahend and add

to minuend

– i.e. a - b = a + (-b)

• So we only need addition and complement

circuits

16

Addition and Subtraction

• Overflow rule

– If two numbers are added and they are both positive

or both negative, then overflow occurs if and only

if the result has the opposite sign

• Subtraction rule

– To subtract one number(subrahend) from another

(minuhend), take twos complement (negation) of

the subtrahend and add it to the minuhend

17

Addition of Numbers

in Twos Complement Representation

18

Subtraction of Numbers in Twos Complement Representation (M – S)

13 14

15 16

17 18

Copyright 2000 N. AYDIN. All rights

reserved. 4

19

Hardware for Addition and Subtraction

20

Multiplication

• Complex

• Work out partial product for each digit

• Take care with place value (column)

• Add partial products

21

Multiplication Example

• 1011 Multiplicand (11 dec)

• x 1101 Multiplier (13 dec)

• 1011 Partial products

• 0000 Note: if multiplier bit is 1 copy

• 1011 multiplicand (place value)

• 1011 otherwise zero

• 10001111 Product (143 dec)

• Note: need double length result

22

Unsigned Binary Multiplication

23

Execution of Example

24

Flowchart for Unsigned Binary

Multiplication

19 20

21 22

23 24

Copyright 2000 N. AYDIN. All rights

reserved. 5

25

Multiplying Negative Numbers

• This does not work!

• Solution 1

– Convert to positive if required

– Multiply as above

– If signs were different, negate answer

• Solution 2

– Booth’s algorithm

26

Booth’s Algorithm

27

Example of Booth’s Algorithm

28

Division

• More complex than multiplication

• Negative numbers are really bad!

• Based on long division

29

001111

Division of Unsigned Binary Integers

1011

00001101

10010011

1011

001110
1011

1011

100

Quotient

Dividend

Remainder

Partial

Remainders

Divisor

30

Flowchart for Unsigned Binary Division

25 26

27 28

29 30

Copyright 2000 N. AYDIN. All rights

reserved. 6

31

Example

32

Real Numbers

• Numbers with fractions

• Could be done in pure binary

– 1001.1010 = 24 + 20 +2-1 + 2-3 =9.625

• Where is the binary point?

• Fixed?

– Very limited

• Moving?

– How do you show where it is?

33

• 123 000 000 000 000

1.23 X 1014

• 0.0000000000000123

1.23 X 10-14

34

Floating Point

• +/- .significand x 2exponent

• Misnomer

• Point is actually fixed between sign bit and

body of mantissa

• Exponent indicates place value (point position)

35

Floating Point Examples

36

Signs for Floating Point

• Mantissa is stored in 2s complement

• Exponent is in excess or biased notation

– e.g. Excess (bias) 128 means

– 8 bit exponent field

– Pure value range 0-255

– Subtract 128 to get correct value

– Range -128 to +127

31 32

33 34

35 36

Copyright 2000 N. AYDIN. All rights

reserved. 7

37

Normalization

• FP numbers are usually normalized

• i.e. exponent is adjusted so that leading bit

(MSB) of mantissa is 1

• Since it is always 1 there is no need to store it

• (c.f. Scientific notation where numbers are

normalized to give a single digit before the

decimal point

• e.g. 3.123 x 103)

38

FP Ranges

• For a 32 bit number

– 8 bit exponent

– +/- 2256  1.5 x 1077

• Accuracy

– The effect of changing lsb of mantissa

– 23 bit mantissa 2-23  1.2 x 10-7

– About 6 decimal places

39

Expressible Numbers

40

Density of Floating Point Numbers

41

IEEE 754

• Standard for floating point storage

• 32 and 64 bit standards

• 8 and 11 bit exponent respectively

• Extended formats (both mantissa and exponent)

for intermediate results

42

IEEE 754 Formats

37 38

39 40

41 42

Copyright 2000 N. AYDIN. All rights

reserved. 8

43

IEEE 754 Format Parameters

44

Interpretation of IEEE 754 Floating-Point

Numbers

45

Floating-Point Numbers and Arithmetic

Operations

46

A floating-point operation may produce

one of these conditions:

• Exponent overflow:
– A positive exponent exceeds the maximum possible expo-nent value. In some

systems, this may be designated as +∞ or —∞.

• Exponent underflow:
– A negative exponent is less than the minimum possible exponent value (e.g., —

200 is less than —127). This means that the number is too small to be
represented, and it may be reported as 0.

• Significand underflow:
– In the process of aligning significands, digits may flow off the right end of the

significand. Some form of rounding is required.

• Significand overflow:
– The addition of two significands of the same sign may result in a carry out of the

most significant bit. This can be fixed by realignment.

47

FP Arithmetic +/-

• Check for zeros

• Align significands (adjusting exponents)

• Add or subtract significands

• Normalize result

48

FP Arithmetic +/- Phase 1

• Zero check

Because addition and subtraction are identical

except for a sign change, the process begins by

changing the sign of the subtrahend if it is a

subtract operation. Next, if either operand is 0,

the other is reported as the result.

43 44

45 46

47 48

Copyright 2000 N. AYDIN. All rights

reserved. 9

49

FP Arithmetic +/- Phase 2

• Significand alignment

• Numbers needs to be manipulated so that the two

exponents are equal.
– To see the need for aligning exponents, consider the following decimal addition:

– (123 x 100) + (456 x 10-2)

– Clearly, we cannot just add the significands. The digits must first be set into

equivalent positions, that is, the 4 of the second number must be aligned with the

3 of the first. Under these conditions, the two exponents will be equal,which is

the mathematical condition under which two numbers in this form can be added.

Thus,

– (123 x 100) + (456 x 10-2) = (123 x 100) + (4.56 x 100) = 127.56x100

50

FP Arithmetic +/- Phase 2

Alignment may be achieved by shifting either the smaller number to

the right (increasing its exponent) or shifting the larger number to the
left. Because either operation may result in the loss of digits, it is the
smaller number that is shifted; any digits that are lost are therefore of
relatively small significance. The alignment is achieved by repeatedly
shifting the magnitude portion of the significand right 1 digit and
incrementing the exponent until the two exponents are equal. (Note
that if the implied base is 16, a shift of 1 digit is a shift of 4 bits.) If
this process results in a 0 value for the significand, then the other
number is reported as the result. Thus, if two numbers have exponents
that differ significantly, the lesser number is lost.

51

FP Arithmetic +/- Phase 3

• Addition

The two significands are added together, taking

into account their signs. Because the signs may

differ, the result may be 0. There is also the

possibility of significand overflow by 1 digit. If

so, the significand of the result is shifted right

and the exponent is incremented. An exponent

overflow could occur as a result; this would be

reported and the operation halted.

52

FP Arithmetic +/- Phase 4

• Normalization

Normalization consists of shifting significand

digits left until the most significant digit (bit, or 4

bits for base-16 exponent) is nonzero. Each shift

causes a decrement of the exponent and thus

could cause an exponent underflow. Finally, the

result must be rounded off and then reported. We

defer a discussion of rounding until after a

discussion of multiplication and division.

53

FP Addition & Subtraction Flowchart

54

FP Arithmetic x/

• Check for zero

• Add/subtract exponents

• Multiply/divide significands (watch sign)

• Normalize

• Round

• All intermediate results should be in double

length storage

49 50

51 52

53 54

Copyright 2000 N. AYDIN. All rights

reserved. 10

55

Floating Point Multiplication

56

Floating Point Division

57

55 56

57

	Slide 1: BLM5207 Computer Organization
	Slide 2: Arithmetic & Logic Unit
	Slide 3: ALU Inputs and Outputs
	Slide 4: Integer Representation
	Slide 5: Sign-Magnitude
	Slide 6: Two’s Complement
	Slide 7: Characteristics of Twos Complement Representation and Arithmetic
	Slide 8: Benefits
	Slide 9: Negation Special Case 1
	Slide 10: Negation Special Case 2
	Slide 11: Range of Numbers
	Slide 12: Conversion Between Lengths
	Slide 13: Fixed-Point Representation
	Slide 14: Integer Arithmetic
	Slide 15: Addition and Subtraction
	Slide 16: Addition and Subtraction
	Slide 17: Addition of Numbers in Twos Complement Representation
	Slide 18: Subtraction of Numbers in Twos Complement Representation (M – S)
	Slide 19: Hardware for Addition and Subtraction
	Slide 20: Multiplication
	Slide 21: Multiplication Example
	Slide 22: Unsigned Binary Multiplication
	Slide 23: Execution of Example
	Slide 24: Flowchart for Unsigned Binary Multiplication
	Slide 25: Multiplying Negative Numbers
	Slide 26: Booth’s Algorithm
	Slide 27: Example of Booth’s Algorithm
	Slide 28: Division
	Slide 29: Division of Unsigned Binary Integers
	Slide 30: Flowchart for Unsigned Binary Division
	Slide 31: Example
	Slide 32: Real Numbers
	Slide 33
	Slide 34: Floating Point
	Slide 35: Floating Point Examples
	Slide 36: Signs for Floating Point
	Slide 37: Normalization
	Slide 38: FP Ranges
	Slide 39: Expressible Numbers
	Slide 40: Density of Floating Point Numbers
	Slide 41: IEEE 754
	Slide 42: IEEE 754 Formats
	Slide 43: IEEE 754 Format Parameters
	Slide 44: Interpretation of IEEE 754 Floating-Point Numbers
	Slide 45: Floating-Point Numbers and Arithmetic Operations
	Slide 46: A floating-point operation may produce one of these conditions:
	Slide 47: FP Arithmetic +/-
	Slide 48: FP Arithmetic +/- Phase 1
	Slide 49: FP Arithmetic +/- Phase 2
	Slide 50: FP Arithmetic +/- Phase 2
	Slide 51: FP Arithmetic +/- Phase 3
	Slide 52: FP Arithmetic +/- Phase 4
	Slide 53: FP Addition & Subtraction Flowchart
	Slide 54: FP Arithmetic x/
	Slide 55: Floating Point Multiplication
	Slide 56: Floating Point Division
	Slide 57

