
Copyright 2000 N. AYDIN. All rights

reserved. 1

BLM5207

Computer Organization

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

Instruction Set Architecture

1 2

Instruction Set Architecture

C Fortran Ada

Compiler

Assembly Language

Assembler

etc. Basic Java

Compiler

Interpreter

Byte Code

Executable

HW

Implementation 1

HW

Implementation N

HW

Implementation 2

3

Instruction Set

• Instruction: Language of the machine

• Instruction set: Vocabulary of the language (Collection of
instructions that are understood by a CPU)
lda, sta, brp, jmp, nop, ... (VVM)

• Machine Code
– machine readable

– Binary(example: 1000110010100000)

• Usually represented by assembly codes
– Human readable

– Example: VVM code adding a number entered from keyboard and a
number in memory location 40

0 in

1 sta 30

2 add 40

3 sta 50

4 hlt

4

Instruction Types

• Data processing

– ADD, SUB

• Data storage (main memory)

– STA

• Data movement (I/O)

– IN, OUT, LDA

• Program flow control

– BRZ

5

Elements of an Instruction

• Operation code (Op-code)

– Do this

• Example: ADD 30 (VVM code)

• Source Operand reference

– To this

• Example: LDA 50 (VVM code)

• Result Operand reference

– Put the result here

• Example: STA 60 (VVM code)

• Next Instruction Reference

– When you have done that, do this...

• PC points to the next instruction

6

Source and Result Operands

• Source and Result Operands can be in one of the

following areas:

– Main memory

– Virtual memory

– Cache

– CPU register

– I/O device

1 2

3 4

5 6

mailto:naydin@yildiz.edu.tr

Copyright 2000 N. AYDIN. All rights

reserved. 2

7

Instruction Representation

• In machine code each instruction has a unique bit pattern

• For human consumption a symbolic representation is

used (assembly language)

• Opcodes are represented by abbreviations, called

mnemonics indicating the operation

– ADD, SUB, LDA, BRP, ...

• In an assembly language, operands can also be

represented as following

– ADD A,B (add contents of B and A and save

the result into A)

8

Simple Instruction Format

• Following is a 16 bit instruction format

• So...

– What is the maximum number of instructions in this

processor?

– What is the maximum directly addressable memory

size?

9

Instruction Set Classification

• One way for classification:

– Number of operands for typical arithmetic

instruction

add $s1, $s2, $s3 3
– What are the possibilities?

– Will use this C statement as an example:

a = b + c;

– Assume a, b and c are in memory
10

Zero Address Machine

• a.k.a. Stack Machines

• Example: a = b + c;

PUSH b # Push b onto stack

PUSH c # Push c onto stack

ADD # Add top two items

on stack and replace

with sum

POP a # Remove top of stack

and store in a

11

One Address Machine

• a.k.a. Accumulator Machine

• One operand is implicitly the accumulator

• Example: a = b + c;

LOAD b # ACC  b

ADD c # ACC  ACC + c

STORE a # a  ACC

• A good example for such a machine is...

VVM

12

Two Address Machine (1)

• a.k.a. Register-Memory Instruction Set

• One operand may be a value from memory

• Machine has n general purpose registers

– $0 through $n-1

• Example: a = b + c;

LOAD $1, b # $1  M[b]

ADD $1, c # $1  $1 + M[c]

STORE $1, a # M[a] $1

7 8

9 10

11 12

Copyright 2000 N. AYDIN. All rights

reserved. 3

13

Two Address Machine (2)

• a.k.a. Memory-Memory Machine

• Another possibility do stuff in memory!

• These machines have registers used to compute

memory addresses

• 2 addresses (One address doubles as operand

and result)

• Example: a = b + c;

MOVE a, b # M[a]  M[b]

ADD a, c # M[a]  M[a] + M[c]

14

Two Address Machine (3)

• a.k.a. Load-Store Instruction Set or Register-

Register Instruction Set

• Typically can only access memory using

load/store instructions

• Example: a = b + c;

LOAD $1, b # $1  M[b]

LOAD $2, c # $2  M[c]

ADD $1, $2 # $1  $1 + $2

STORE $1, a # M[a]  $1

15

Three Address Machine

• a.k.a. Load-Store Instruction Set or Register-Register

Instruction Set

• Typically can only access memory using load/store

instructions

• 3 addresses (Operand 1, Operand 2, Result)

– May be a forth - next instruction (usually implicit)

– Needs very long words to hold everything

• Example: a = b + c;

LOAD $1, b # $1  M[b]

LOAD $2, c # $2  M[c]

ADD $3, $1, $2 # $3  $1 + $2

STORE $3, a # M[a]  $3

16

Utilization of Instruction Addresses

17

Types of Operand

• Addresses

– Operand is in the address

• Numbers (actual operand)

– Integer or fixed point

– floating point

– decimal

• Characters (actual operand)

– ASCII etc.

• Logical Data (actual operand)

– Bits or flags

18

Pentium Data Types

• 8 bit (byte), 16 bit (word), 32 bit (double

word), 64 bit (quad word)

• Addressing in Pentium is by 8 bit units

• A 32 bit double word is read at addresses

divisible by 4:

0100 1A 22 F1 77

+0 +1 +2 +3

13 14

15 16

17 18

Copyright 2000 N. AYDIN. All rights

reserved. 4

19

Pentium Numeric Data Formats

20

PowerPC Data Types

• 8 (byte), 16 (halfword), 32 (word) and 64

(doubleword) length data types

• Fixed point processor recognises:

– Unsigned byte, unsigned halfword, signed halfword,

unsigned word, signed word, unsigned doubleword,

byte string (<128 bytes)

• Floating point

– IEEE 754

– Single or double precision

21

Types of Operation

• Data Transfer

• Arithmetic

• Logical

• Conversion

• I/O

• System Control

• Transfer of Control

22

Data Transfer

• Need to specify

– Source

– Destination

– Amount of data

• May be different instructions for different

movements

• Or one instruction and different addresses

23

Arithmetic

• Basic arithmetic operations are...
– Add

– Subtract

– Multiply

– Divide

– Increment (a++)

– Decrement (a--)

– Negate (-a)

– Absolute

• Arithmetic operations are provided for...
– Signed Integer

– Floating point?

– Packed decimal numbers?

24

Logical

• Bitwise operations

• AND, OR, NOT

– Example1: bit masking using AND operation

• (R1) = 10100101

• (R2) = 00001111

• (R1) AND (R2) = 00000101

– Example2: taking ones coplement using XOR

operation

• (R1) = 10100101

• (R2) = 11111111

• (R1) XOR (R2) = 01011010

19 20

21 22

23 24

Copyright 2000 N. AYDIN. All rights

reserved. 5

25

Basic Logical Operations

26

Shift and Rotate Operations

27

Examples of Shift and Rotate Operations An example - sending two characters in a word

• Suppose we wish to transmit characters of data to

an I/O device, 1 character at a time.

– If each memory word is 16 bits in length and contains

two characters, we must unpack the characters before

they can be sent.

• To send the left-hand character:

– Load the word into a register

– AND with the value 1111111100000000

• This masks out the character on the right

28

An example - sending two characters in a word

– Shift to the right eight times

• This shifts the remaining character to the right half of the

register

– Perform I/O

• The I/O module reads the lower-order 8 bits from the data

bus.

• To send the right-hand character:

– Load the word again into the register

– AND with 0000000011111111

– Perform I/O

29 30

Conversion

• Conversion instructions are those that change

the format or operate on the format of data.

• For example:

– Binary to Decimal conversion

25 26

27 28

29 30

Copyright 2000 N. AYDIN. All rights

reserved. 6

31

Input/Output

• May be specific instructions

– IN, OUT

• May be done using data movement instructions

(memory mapped)

• May be done by a separate controller (DMA)

32

Systems Control

• Privileged instructions

• CPU needs to be in specific state

• For operating systems use

33

Transfer of Control

• Branch

– For example: brz 10 (branch to 10 if result is zero)

• Skip

– e.g. increment and skip if zero

• Subroutine call

– c.f. interrupt call

34

Branch Instruction

Nested Procedure Calls

35 36

Use of Stack

31 32

33 34

35 36

Copyright 2000 N. AYDIN. All rights

reserved. 7

Types of Operation

37

CPU Actions for Various Types of Operations

38

Pentium Operation Types

39

Pentium Condition Codes

40

Pentium Conditions for Conditional Jump and SETcc Instructions

41

MMX Instruction Set

42

37 38

39 40

41 42

Copyright 2000 N. AYDIN. All rights

reserved. 8

PowerPC Operation Types

43

PowerPC Operation Types

44

45

Byte Ordering

• How should bytes within multi-byte word be

ordered in memory?

• Some conventions

– Sun’s, Mac’s are “Big Endian” machines

• Least significant byte has highest address

– Alphas, PC’s are “Little Endian” machines

• Least significant byte has lowest address

46

Byte Ordering Example

• Big Endian

– Least significant byte has highest address

• Little Endian

– Least significant byte has lowest address

• Example

– Variable x has 4-byte representation 0x01234567

– Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Representing Integers

47

• int A = 15213;

• int B = -15213;

• long int C = 15213;

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D

3B

00

00

Linux/Alpha A

3B

6D

00

00

Sun A

93

C4

FF

FF

Linux/Alpha B

C4

93

FF

FF

Sun B

Two’s complement representation

00

00

00

00

6D

3B

00

00

Alpha C

3B

6D

00

00

Sun C

6D

3B

00

00

Linux C

Representing Pointers

48

• int B = -15213;

• int *P = &B;

Alpha Address

Hex: 1 F F F F F C A 0

Binary: 0001 1111 1111 1111 1111 1111 1100 1010 0000 01

00

00

00

A0

FC

FF

FF

Alpha P

Sun Address

Hex: E F F F F B 2 C

Binary: 1110 1111 1111 1111 1111 1011 0010 1100

Different compilers & machines assign different locations to objects

FB

2C

EF

FF

Sun P

FF

BF

D4

F8

Linux P

Linux Address

Hex: B F F F F 8 D 4

Binary: 1011 1111 1111 1111 1111 1000 1101 0100

43 44

45 46

47 48

Copyright 2000 N. AYDIN. All rights

reserved. 9

Representing Floats

49

• Float F = 15213.0;

IEEE Single Precision Floating Point Representation

Hex: 4 6 6 D B 4 0 0

Binary: 0100 0110 0110 1101 1011 0100 0000 0000

15213: 1110 1101 1011 01

Not same as integer representation, but consistent across machines

00

B4

6D

46

Linux/Alpha F

B4

00

46

6D

Sun F

Can see some relation to integer representation, but not obvious

IEEE Single Precision Floating Point Representation

Hex: 4 6 6 D B 4 0 0

Binary: 0100 0110 0110 1101 1011 0100 0000 0000

15213: 1110 1101 1011 01

IEEE Single Precision Floating Point Representation

Hex: 4 6 6 D B 4 0 0

Binary: 0100 0110 0110 1101 1011 0100 0000 0000

15213: 1110 1101 1011 01

Representing Strings

50

• char S[6] = "15213";• Strings in C
– Represented by array of characters

– Each character encoded in ASCII format
• Standard 7-bit encoding of character set

• Character “0” has code 0x30
– Digit i has code 0x30+i

– String should be null-terminated
• Final character = 0

• Compatibility
– Byte ordering is not an issue

• Data are single byte quantities

– Text files generally platform independent
• Except for different conventions of line termination

character(s)!

Linux/Alpha S Sun S

32

31

31

35

33

00

32

31

31

35

33

00

51

Example of C Data Structure

52

Common file formats and their endian order

• Adobe Photoshop -- Big Endian

• BMP (Windows and OS/2 Bitmaps) -- Little Endian

• DXF (AutoCad) -- Variable

• GIF -- Little Endian

• IMG (GEM Raster) -- Big Endian

• JPEG -- Big Endian

• FLI (Autodesk Animator) -- Little Endian

• MacPaint -- Big Endian

• PCX (PC Paintbrush) -- Little Endian

• PostScript -- Not Applicable (text!)

• POV (Persistence of Vision ray-tracer) -- Not Applicable (text!)

• QTM (Quicktime Movies) -- Little Endian (on a Mac!)

• Microsoft RIFF (.WAV & .AVI) -- Both

• Microsoft RTF (Rich Text Format) -- Little Endian

• SGI (Silicon Graphics) -- Big Endian

• Sun Raster -- Big Endian

• TGA (Targa) -- Little Endian

• TIFF -- Both, Endian identifier encoded into file

• WPG (WordPerfect Graphics Metafile) -- Big Endian (on a PC!)

• XWD (X Window Dump) -- Both, Endian identifier encoded into file

53

49 50

51 52

53

