
Copyright 2000 N. AYDIN. All rights

reserved. 1

BLM5207

Computer Organization

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

Introduction to a Simple Computer

1

What is a computer?

• In terms of what?

– Functional

• All computer functions

are:

– Data processing

– Data storage

– Data movement

– Control

– Structural

• Corresponding computer

components are:

– CPU

– Memory

– I/O

– System interconnection

2

Computer

CPU

I/O

Memory

System

Bus

Structure - Top Level

3

Computer

Computer

Peripherals

Communication

lines

Main

Memory

Input

Output

Systems

Interconnection

Central

Processing

Unit

Structure - The CPU

4

CPU

Computer

CPU

I/O

Memory

System

Bus

Arithmetic

and

Logic Unit

Control

Unit

Internal CPU

Interconnection

Registers

Structure - The Control Unit

5

Control Unit

Control

Memory

Control Unit

Registers and

Decoders

Sequencing

Logic

CPU

Control

Unit

ALU

Registers

Internal

Bus

Fundamental computer elements

• Data storage:
– Provided by memory cells

• Data processing:
– Provided by gates

• Data movement:
– The paths between components are used to move data from/to memory

• Control:
– The paths between components can carry control signals

6

1 2

3 4

5 6

mailto:naydin@yildiz.edu.tr

Copyright 2000 N. AYDIN. All rights

reserved. 2

Levels of Representation

7

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signal
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110

1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

°

°

ALUOP[0:3] <= InstReg[9:11] & MASK

Program Concept

• Programming in
hardware

– Hardwired systems are
inflexible

• Programming in
software

– General purpose hardware
can do different tasks,
given correct control
signals

– Instead of re-wiring,
supply a new set of
control signals

8

What is a program?

• A sequence of steps

• For each step, an arithmetic or logical operation
is done

• For each operation, a different set of control
signals is needed

• For each operation a unique code is provided

– e.g. ADD, MOVE

• A hardware segment accepts the code and issues
the control signals

• We have a computer!
9

Components

• The Central Processing Unit contains

– The Control Unit

– The Arithmetic and Logic Unit

• Data and instructions need to get into the system

and results out

– Input/output

• Temporary storage of code and results is needed

– Main memory
10

11

Computer Components-CPU CPU Structure

• CPU must:

– Fetch instructions

– Interpret instructions

– Fetch data

– Process data

– Write data

12

7 8

9 10

11 12

Copyright 2000 N. AYDIN. All rights

reserved. 3

13

CPU Structure

• CPU must:

– Fetch instructions

– Interpret instructions

– Fetch data

– Process data

– Write data

Registers

• CPU must have some working space (temporary
storage)
– Called registers

• Manipulated directly by the
Control Unit

• Number and function vary
between processor designs

• One of the major design
decisions

• Size in bits or bytes (not
MB like memory)

• Can hold data, an address or an instruction

• Top level of memory hierarchy

14

Registers in the P perform two roles:

• User-visible registers
• Enable the machine- or assembly language programmer to

minimize main memory references by optimizing use of
registers

– General Purpose registers

– Data registers

– Address registers

– Condition Code Registers (flags)

• Sets of individual bits
– e.g. result of last operation was zero

• Can be read (implicitly) by programs
– e.g. Jump if zero

• Can not (usually) be set by programs

15

Registers in the P perform two roles:

• Control and status registers
• Used by the control unit to control the operation of the processor

and by priviliged, operating system programs to control the
execution of programs

– Program Counter (PC)
• Also called instruction pointer

• Contains the address of an instruction to be fetched

– Instruction Decoding Register (IR)
• Stores instruction fetched from memory

– Memory Address Register (MAR)
• Contains the addres of location in memory

– Memory Buffer Register (MBR)
• Also called Memory Data Register (MDR)

• Contains a word or data to be written to memory or the word
most recently read

16

Program Status Word (Status Registers)

• A set of bits containing status information

• Includes Condition Codes (flags)

– Sign

• sign of last result

– Zero

• set when the result is 0

– Carry

• set if an operation resulted in a carry (addition) into or borrow
(subtraction) out of a high order bit

– Equal

• set if a logical compare result is equality

– Overflow

• used to indicate arithmetic overflow

– Interrupt enable/disable

• used to enable or disable interrupts
17

Register Operations

• Stores values from other locations such as

– registers and memory

• Addition and subtraction

• Shift or rotate data

• Test contents for conditions such as zero or

positive

18

13 14

15 16

17 18

Copyright 2000 N. AYDIN. All rights

reserved. 4

Example Register Organizations

19 20

Computer Components-Memory

Operation of Memory

• Each memory location has a unique address

• Address from an instruction is copied to the MAR which

finds the location in memory

• CPU determines if it is a

store or retrieval

• Transfer takes place

between the MDR and

memory

• MDR is a two-way

register

Relationship between MAR, MDR and Memory

21

Address Data

MAR-MDR Example

22

Visual Analogy of Memory

23

Individual Memory Cell

24

19 20

21 22

23 24

Copyright 2000 N. AYDIN. All rights

reserved. 5

Memory Capacity

• Determined by two factors

1. Number of bits in the MAR

• 2K where K = width of the register in bits

2. Size of the address portion of the instruction

• 4 bits allows 16 locations

• 8 bits allows 256 locations

• 32 bits allows 4,294,967,296 or 4 GB

• Important for performance

– Insufficient memory can cause a processor to work at
50% below performance

25 26

• This storage organization can be thought of as a pyramid:

Memory Hierarchy

27

Cache

• Small amount of fast memory

• Sits between normal main memory and CPU

• May be located on CPU chip or module

28

• Cache memory enhances performance by providing faster

memory access speed.

• Virtual memory enhances performance by providing

greater memory capacity, without the expense of adding

main memory.

– Instead, a portion of a disk drive serves as an extension of main

memory.

• If a system uses paging, virtual memory partitions main

memory into individually managed page frames, that are

written (or paged) to disk when they are not immediately

needed.

Virtual Memory

RAM: Random Access Memory

• DRAM (Dynamic RAM)

– Most common, cheap

– Volatile:

• must be refreshed (recharged with

power) 1000’s of times each second

• SRAM (static RAM)

– Faster than DRAM and more

expensive than DRAM

– Volatile

• Frequently small amount used in cache

memory for high-speed access used

29

ROM - Read Only Memory

• Permanent storage

– Non-volatile memory to hold software that is not

expected to change over the life of the system

• Used in...

– Microprogramming

– Library subroutines

– Systems programs (BIOS)

• initial boot instructions and diagnostics

– Function tables

30

25 26

27 28

29 30

Copyright 2000 N. AYDIN. All rights

reserved. 6

31

Types of ROM

• Written during manufacture

– Very expensive for small runs

• Programmable (once)

– PROM

– Needs special equipment to program

• Read “mostly”

– Erasable Programmable (EPROM)

• Erased by UV

– Electrically Erasable (EEPROM)

• Takes much longer to write than read

– Flash memory

• Erase whole memory electrically

32

Types of External Memory

• SSD

– Fast

– Expensive (relatively)

• Magnetic Disk

– RAID

– Removable

• Optical

– CD-ROM

– CD-Recordable (CD-R)

– CD-R/W

– DVD

• Magnetic Tape

33

Computer Components-I/O

34

Input/Output Problems

• Wide variety of

peripherals

– Delivering different

amounts of data

– At different speeds

– In different formats

• All slower than CPU

and RAM

• Need I/O modules

35

Input/Output Module

• Interface to CPU and

Memory

• Interface to one or more

peripherals

• I/O Module Function:

– Control & Timing

– CPU Communication

– Device Communication

– Data Buffering

– Error Detection

I/O Module Block Diagram

36

External Devices

• External Devices:

– Human readable

• Screen, printer,

keyboard

– Machine readable

• Monitoring and

control

– Communication

• Modem

• Network Interface

Card (NIC)

External Device Block Diagram

31 32

33 34

35 36

Copyright 2000 N. AYDIN. All rights

reserved. 7

37

I/O Steps

• CPU checks I/O module device status

• I/O module returns status

• If ready, CPU requests data transfer

• I/O module gets data from device

• I/O module transfers data to CPU

• Variations for output, DMA, etc.

38

• I/O can be controlled in four general ways:

– Programmed I/O

• Reserves a register for each I/O device.

• Each register is continually polled to detect data arrival.

– Interrupt-Driven I/O

• Allows the CPU to do other things until I/O is requested.

– Direct Memory Access (DMA)

• Offloads I/O processing to a special-purpose chip that takes

care of the details.

– Channel I/O

• Uses dedicated I/O processors.

I/O Architectures

39

Computer Components- Bus

40

Bus

• The physical connection that makes it possible to
transfer data from one location in the computer system
to another

• Group of electrical conductors for carrying signals
from one location to another

• 4 kinds of signals

– Data
• Alphanumeric

• Numerical

• instructions

– Addresses

– Control signals

– Power (sometimes)

Bus

• Connect

– CPU and Memory

– I/O peripherals:

• on same bus as CPU/memory or separate bus

• Physical packaging commonly called backplane

– Also called system bus or external bus

– Example of broadcast bus

– Part of printed circuit board called motherboard that

holds CPU and related components

41

Bus Characteristics

• Protocol

– Documented agreement for communication

– Specification that spells out the meaning of each line

and each signal on each line

• Throughput, i.e., data transfer rate in bits per

second

• Data width in bits carried simultaneously

42

37 38

39 40

41 42

Copyright 2000 N. AYDIN. All rights

reserved. 8

43

Bus types

• Data Bus

– Carries data

– Width is a key determinant of performance

• 8, 16, 32, 64 bit

• Address bus

– Identify the source or destination of data

– Bus width determines maximum memory capacity of system

• e.g. 8080 has 16 bit address bus giving 64k address space

• Control Bus

– Control and timing information

• Memory read/write; I/O read/write; Transfer acknowledge; Bus request;

Bus grant; Interrupt request; Interrupt acknowledge; Clock; Reset

44

What do buses look like?

– Parallel lines on circuit

boards

– Ribbon cables

– Strip connectors on

mother boards

• e.g. PCI

– Sets of wires

Physical Realization of

Bus Architecture

Point-to-point vs. Multipoint

Broadcast
bus
Example:
Ethernet

Plug-in
device

Shared among
multiple devices

45

Motherboard

• Printed

circuit

board that

holds CPU

and related

components

including

backplane

46

Motherboard

47

Typical PC Interconnections

• Bus interface bridges connect different bus types

48

43 44

45 46

47 48

Copyright 2000 N. AYDIN. All rights

reserved. 9

PCI Bus Connections

49 50

Instructions

• Instruction
– Direction given to a computer

– Causes electrical signals to be sent through specific
circuits for processing

• Instruction set
– Design defines functions performed by the processor

– Differentiates computer architecture by the
• Number of instructions

• Complexity of operations performed by individual
instructions

• Data types supported

• Format (layout, fixed vs. variable length)

• Use of registers

• Addressing (size, modes)
51

Instruction Elements

• OPCODE: task

• Source OPERAND(s)

• Result OPERAND

– Location of data (register, memory)

• Explicit:

– included in instruction

• Implicit:

– default assumed

OPCODE
Source

OPERAND
Result

OPERAND

Addresses

52

Instruction Format

• Machine-specific template that specifies

– Length of the op code

– Number of operands

– Length of operands

• Simple 32-bit Instruction Format

53

Instruction Formats: CISC

54

49 50

51 52

53 54

Copyright 2000 N. AYDIN. All rights

reserved. 10

Instruction Formats: RISC

55

Instruction Types

• Data Transfer (load, store)
– Most common, greatest flexibility

– Involve memory and registers

– What’s a word ?
• 16? 32? 64 bits?

• Arithmetic
– Operators + - / * ^

– Integers and floating point

• Logical or Boolean
– Relational operators: > < =

– Boolean operators AND, OR, XOR, NOR, and NOT

• Single operand manipulation instructions
– Negating, decrementing, incrementing

56

More Instruction Types

• Bit manipulation instructions

– Flags to test for conditions

• Shift and rotate

• Program control

• Stack instructions

• Multiple data instructions

• I/O and machine control

57

Register Shifts and Rotates

58

Program Control Instructions

• Program control

– Jump and branch

– Subroutine call

and return

59

Stack Instructions

• Stack instructions

– LIFO method for organizing information

– Items removed in the reverse order from that in which

they are added

60

Push Pop

55 56

57 58

59 60

Copyright 2000 N. AYDIN. All rights

reserved. 11

Fixed Location Subroutine Return Address Storage

61

Multiple Data Instructions

• Perform a single operation on multiple pieces of

data simultaneously

– SIMD:

• Single Instruction, Multiple Data

– Intel MMX™: 57 multimedia instruction

– Commonly used in

vector and array

processing

applications

62

Instruction Cycle

• Two steps:

– Fetch

– Execute

63

Fetch Cycle

• Program Counter (PC)

holds address of next instruction to fetch

• Processor fetches instruction from memory

location pointed to by PC

• Increment PC

– Unless told otherwise

• Instruction loaded into Instruction Register

(IR)

• Processor interprets instruction and performs

required actions
64

Execute Cycle

• Processor-memory

– Data transfer between CPU and main memory

• Processor I/O

– Data transfer between CPU and I/O module

• Data processing

– Some arithmetic or logical operation on data

• Control

– Alteration of sequence of operations

• e.g. jump

• Combination of above

65

Instruction Cycle State Diagram

66

61 62

63 64

65 66

Copyright 2000 N. AYDIN. All rights

reserved. 12

A simple example – A hypotetical machine

67

A simple example –

• Next figure illustrates a partial program

execution.

• It adds the contents of the memory word at

address 940 to the contents of the memory word

at address 941 and stores the result in the address

941.

• Here 3 instructions (3 fetch and 3 execute cycles)

are required

68

Example of Program Execution

69

von Neumann Architecture (1945)

• Stored program concept

• Memory is addressed linearly

• Memory is addressed without regard to content

– This is a general

depiction of a von

Neumann system:

– These computers

employ a fetch-

decode-execute cycle

to run programs as

follows . . .

70

• The control unit fetches the next instruction from
memory using the program counter to determine
where the instruction is located.

von Neumann Architecture

71

• The instruction is decoded into a language that
the ALU can understand.

von Neumann Architecture

72

67 68

69 70

71 72

Copyright 2000 N. AYDIN. All rights

reserved. 13

• Any data operands required to execute the
instruction are fetched from memory and placed
into registers within the CPU.

von Neumann Architecture

73

• The ALU executes the instruction and places
results in registers or memory.

von Neumann Architecture

74

75

A virtual processor for understanding instruction cycle

76

The VVM Machine

• The Visible Virtual Machine (VVM) is based on a model of a

simple computer device called the Little Man Computer which

was originally developed by Stuart Madnick in 1965, and revised

in 1979.

• The VVM is a virtual machine because it only appears to be a

functioning hardware device.

• In reality, the VVM "hardware" is created through a software

simulation.

• One important simplifying feature of this machine is that it

works in decimal rather than in the traditional binary number

system.

• Also, the VVM works with only one form of data –

– decimal integers.

77

Hardware Components of VVM

• I/O Log
– This represents the system console which shows the details of

relevant events in the execution of the program.
• Examples of events are the program begins, the program aborts, or

input or output is generated.

• Accumulator Register
– This register holds the values used in arithmetic and logical

computations.

– It also serves as a buffer between input/output and memory.
• Legitimate values are any integer between -999 and +999.

• Values outside of this range will cause a fatal VVM Machine error.

• Non integer values are converted to integers before being loaded into
the register.

• Instruction Cycle Display
– This shows the number of instructions that have been

executed since the current program execution began.

78

73 74

75 76

77 78

Copyright 2000 N. AYDIN. All rights

reserved. 14

Hardware Components of VVM

• Instruction Register (Instr. Reg.).
– This register holds the next instruction to be executed.

– divided into two parts:
• a one-digit operation code, and a two digit operand.

– The Assembly Language mnemonic code for the operation code is
displayed below the register.

• Program Counter Register (Prog. Ctr.).
– The two-digit integer value in this register "points" to the next instruction

to be fetched from RAM.

– Most instructions increment this register during the execute phase of the
instruction cycle.

– Legitimate values range from 00 to 99.
• A value beyond this range causes a fatal VVM Machine error.

• RAM.
– The 100 data-word Random Access Storage is shown as a matrix of ten

rows and ten columns.

– The two-digit memory addresses increase sequentially across the rows and
run from 00 to 99.

• Each storage location can hold a three-digit integer value between -999 and +999.

79

Data and Addresses

• All data and address values are maintained as

decimal integers.

• The 100 data-word memory is addresses with

two-digit addressed in the range 00-99.

• Each memory location holds one data-word

which is a decimal integer in the range -999 -

+999.

• Data values beyond this range cause a data

overflow condition and trigger a VVM system

error.

80

VVM

81

VVM

82

VVM

83

VVM System Errors

• Data value out of range.
– This condition occurs when a data value exceeds the legitimate range -999 -

+999.

– The condition will be detected while the data resides in the Accumulator
Register.

• Probable causes are an improper addition or subtraction operation, or invalid user input.

• Undefined instruction.
– This occurs when the machine attempts to execute a three-digit value in the

Instruction Register which can not be interpreted as a valid instruction code.
• Probable causes of this error are attempting to use a data value as an instruction, an improper

Branch instruction, or failure to provide a Halt instruction in your program.

• Program counter out of range.
– This occurs when the Program Counter Register is incremented beyond the

limit of 99.
• The likely cause is failure to include a Halt instruction in your program, or a branch to a high

memory address.

• User cancel.
– The user pressed the "Cancel" button during an Input or Output operation.

84

79 80

81 82

83 84

Copyright 2000 N. AYDIN. All rights

reserved. 15

The Language Instructions

• Load Accumulator (5nn) [LDA nn]
– The content of RAM address nn is copied to the Accumulator Register, replacing

the current content of the register.
– The content of RAM address nn remains unchanged. The Program Counter

Register is incremented by one.

• Store Accumulator (3nn) [STO nn] or [STA nn]
– The content of the Accumulator Register is copied to RAM address nn, replacing

the current content of the address.
– The content of the Accumulator Register remains unchanged.
– The Program Counter Register is incremented by one.

• Add (1nn) [ADD nn]
– The content of RAM address nn is added to the content of the Accumulator

Register, replacing the current content of the register.
– The content of RAM address nn remains unchanged.
– The Program Counter Register is incremented by one.

• Subtract (2nn) [SUB nn]
– The content of RAM address nn is subtracted from the content of the

Accumulator Register, replacing the current content of the register.
– The content of RAM address nn remains unchanged.
– The Program Counter Register is incremented by one.

85

The Language Instructions

• Input (901) [IN] or [INP]
– A value input by the user is stored in the Accumulator Register, replacing

the current content of the register.

– Note that the two-digit operand does not represent an address in this
instruction, but rather specifies the particulars of the I/O operation (see
Output).

– The operand value can be omitted in the Assembly Language format.

– The Program Counter Register is incremented by one with this instruction.

• Output (902) [OUT] or [PRN]
– The content of the Accumulator Register is output to the user.

– The current content of the register remains unchanged. Note that the two-
digit operand does not represent an address in this instruction, but rather
specifies the particulars of the I/O operation (see Input).

– The operand value can be omitted in the Assembly Language format.

– The Program Counter Register is incremented by one with this instruction.

86

The Language Instructions

• Branch if Zero (7nn) [BRZ nn]
– This is a conditional branch instruction.

– If the value in the Accumulator Register is zero, then the current value of
the Program Counter Register is replaced by the operand value nn (the
result is that the next instruction to be executed will be taken from address
nn rather than from the next sequential address).

– Otherwise (Accumulator >< 0), the Program Counter Register is
incremented by one (thus the next instruction to be executed will be taken
from the next sequential address).

• Branch if Positive or Zero (8nn) [BRP nn]
– This is a conditional branch instruction.

– If the value in the Accumulator Register is nonnegative (i.e., >= 0), then the
current value of the Program Counter Register is replaced by the operand
value nn (the result is that the next instruction to be executed will be taken
from address nn rather than from the next sequential address).

– Otherwise (Accumulator < 0), the Program Counter Register is incremented
by one (thus the next instruction to be executed will be taken from the next
sequential address).

87

The Language Instructions

• Branch (6nn) [BR nn] or[BRU nn] or [JMP nn]
– This is an unconditional branch instruction.

– The current value of the Program Counter Register is replaced by the
operand value nn.

– The result is that the next instruction to be executed will be taken from
address nn rather than from the next sequential address.

– The value of the Program Counter Register is not incremented with this
instruction.

• No Operation (4nn) [NOP] or [NUL]
– This instruction does nothing other than increment the Program Counter

Register by one.

– The operand value nn is ignored in this instruction and can be omitted in
the Assembly Language format.

• This instruction is unique to the VVM and is not part of the Little Man Model.

• Halt (0nn) [HLT] or [COB]
– Program execution is terminated.

– The operand value nn is ignored in this instruction and can be omitted in
the Assembly Language format.

88

Embedding Data in Programs

• Data values used by a program can be loaded
into memory along with the program.

• In Machine or Assembly Language form simply
use the format "snnn" where s is an optional
sign, and nnn is the three-digit data value.

• In Assembly Language, you can specify "DAT
snnn" for clarity.

89

Address vs. Content

• Addresses are consecutive

• Content may be Data or Instructions

• Content: Instructions

– Op code

• Operation code

• Arbitrary mnemonic

– Operand

• Object to be manipulated

– Data or Address of data

90

Address Content

Address Content

Op code Operand

85 86

87 88

89 90

Copyright 2000 N. AYDIN. All rights

reserved. 16

Assembly Language

• Specific to a CPU

• 1 to 1 correspondence between assembly
language instruction and binary (machine)
language instruction

• Mnemonics (short character sequence) represent
instructions

• Used when programmer needs precise control
over hardware,

– e.g., device drivers

91

Simple Program: Add 2 Numbers

• Assume data is stored in mailboxes with

addresses > 80

• Write instructions

Input a #

Store the #

Input a #

Add

Output the
number

92

Mailbox Mnemonic Code Instruction Description

00 IN 901 ;input 1st Number

01 STO 85 399 ;store data

02 IN 901 ;input 2nd Number

03 ADD 85 199 ;add 1st # to 2nd #

04 OUT 902 ;output result

05 COB 000 ;stop

85 DAT 00 000 ;data

Find Positive Difference of 2 Numbers

00 IN 901

01 STO 10 310

02 IN 901

03 STO 11 311

04 SUB 10 210

05 BRP 08 808 ;test

06 LDA 10 510 ;if negative, reverse order

07 SUB 11 211

08 OUT 902 ;print result and

09 COB 000 ;stop

10 DAT 00 000 ;used for data

11 DAT 00 000 ;used for data

93 94

91 92

93 94

