BLM5207
Computer Organization

Prof. Dr. Nizamettin AYDIN
naydin@yildiz.edu.tr
http://wwwa3.yildiz.edu.tr/~naydin

What is a computer?

* In terms of what?

— Structural

Introduction to a Simple Computer

— Functional
« All computer functions « Corresponding computer
are: components are:
— Data processing - CPU
- Datastorage ~ Memory
FEREES . Data movement - 1o
) } — Control — System interconnection
|l
/ WO

1
Structure - Top Level Structure - The CPU
Peripherals
) Internal CPU

erconnectio Interconnectiol

Communication

lines

3 4

Structure - The Control Unit

Control Unit
Registers and
Decoders

Fundamental computer elements

—* Boolean Binary
Input + logic f——p Output Tnput — 3| storage | Output
function el
le_T
Activate Write
signal
(o) Gate (b) Memory eell

« Data storage:
— Provided by memory cells
« Data processing:
Provided by gates
« Data movement:
— The paths between components are used to move data from/to memory

« Control:
The paths between components can carry control signals

Copyright 2000 N. AYDIN. All rights
reserved.

mailto:naydin@yildiz.edu.tr

Levels of Representation

Program VI = vik+1];
Compiler v[k+1] = temp;
w $15, 0($2)
Assembly Language
Program w $16, 4($2)
SwW $16, 0($2)
Assembler SW $15, 4($2)

Machine Language 1010 11 1 000 0000 1001 1100 0110
Program 1100 01 0 111 0101 1000 0000 1001

Machine Interpretation

ALUOP[0:3] <= InstReg[9:11] & MASK

Program Concept

» Programming in
hardware
— Hardwired systems are
inflexible
» Programming in
software
— General purpose hardware
can do different tasks,
given correct control
signals
— Instead of re-wiring,
supply a new set of
control signals

Results

Dt m—

Instruction
codes

Data m— Results.

b Prograsmming in scftwaro

Copyright 2000 N. AYDIN. All rights
reserved.

7 8
What is a program? Components
A sequence of steps The Central Processing Unit contains
« For each step, an arithmetic or logical operation — The Control Unit
is done — The Arithmetic and Logic Unit
« For each operation, a different set of control
signals is needed . . .
. . . . « Data and instructions need to get into the system
« For each operation a unique code is provided and results out
—e.g. ADD, MOVE outloutout
A hardware segment accepts the code and issues ~ Inputoutpu
the control signals
« Temporary storage of code and results is needed
» We have a computer! — Main memory
9 10
Computer Components-CPU CPU Structure
CPU oo Main Memory o . CPU mUSt: - P
[re][we . L g — Fetch instructions il
TR] [weR | — Interpret instructions
om]| P ~ Fetch data
= : — Process data oadue
1O Module . — Write data
e L
JOBR © Inputotd bufer regiir
11 12

CPU Structure

* CPU must:
Fetch instructions —
R R Artithmetie and Logic Unit < »
Interpret instructions M
Sains Fags | P
Fetch data > | -
e » .
Process data e » , . N
Write data H &
Arithmethc -
Bt [>
iy

Uit
vl
Puths

Registers

» CPU must have some working space (temporary
storage)
Called registers
» Manipulated directly by the
‘D [Control Unit
e 1%y || = Number and function vary
: between processor designs

T_D_ * ||« One of the major design

zeensl | decisions
e « Size in bits or bytes (not
MB like memory)

 Can hold data, an address or an instruction
* Top level of memory hierarchy

13

14

Registers in the puP perform two roles:

« User-visible registers

« Enable the machine- or assembly language programmer to
minimize main memory references by optimizing use of
registers

— General Purpose registers
— Data registers
— Address registers
— Condition Code Registers (flags)
« Sets of individual bits
— e.g. result of last operation was zero
« Can be read (implicitly) by programs
— e.g. Jump if zero
« Can not (usually) be set by programs

Registers in the puP perform two roles:

 Control and status registers

» Used by the control unit to control the operation of the processor
and by priviliged, operating system programs to control the
execution of programs

— Program Counter (PC)
« Also called instruction pointer
« Contains the address of an instruction to be fetched
— Instruction Decoding Register (IR)
« Stores instruction fetched from memory
— Memory Address Register (MAR)
« Contains the addres of location in memory
— Memory Buffer Register (MBR)
« Also called Memory Data Register (MDR)

« Contains a word or data to be written to memory or the word
most recently read

15

16

Program Status Word (Status Registers)

» A set of bits containing status information
Includes Condition Codes (flags)
Sign
« sign of last result
Zero
« set when the result is 0
Carry

« set if an operation resulted in a carry (addition) into or borrow
(subtraction) out of a high order bit

Equal
« set if a logical compare result is equality
Overflow
« used to indicate arithmetic overflow
— Interrupt enable/disable
« used to enable or disable interrupts

Register Operations

Stores values from other locations such as
— registers and memory

Addition and subtraction

Shift or rotate data

« Test contents for conditions such as zero or
positive

17

Copyright 2000 N. AYDIN. All rights
reserved.

18

Example Register Organizations

Data Registers General Registers General Reglsters
[AX EAX AX
o BX [Huee EBX B
m X [Cowt ECX o
o X [Dun EDX [
4
s Pointer & ndex P v
6 S [Stack P Enr F
v St il

EDI T

Athdress Registers
A0 Program Status
A FLAGS Register
a2 [Tstructian Puinter |
Al
Ad
AS f€) 80386 - Pentivm 11
A6
A7 Program Status
AT [Cimierr |

Flags
Program Stats
(b) 5086
Status Register
() MC6S00

Computer Components-Memory

CPU Main Memory

System

/O AR
Data
1/0 Module n-2

= Program counter
Gufiers IR = Instruction register
= Memory address register

Memary buffer register
VO AR = Inpulioutput address register
VO BR = Inputioutput buffer register

19 20|
19 20
Operation of Memory MAR-MDR Example
» Each memory location has a unique address
» Address from an instruction is copied to the MAR which
finds the location in memory o ’“15" .
Address + CPU determines if itis a g Ll |5
A\ store or retrieval g H $ R
£ o3 SEE i
- + Transfer takes place 2 o £ Loy [1]] _Active
i between the MDR and e [l J 63 line
H =
! memory ﬂ:b
! + MDR is a two-way 10001, -5 11 [T
reglster Memory data register
Relationship between MAR, MDR and Memory
21 22
21 22
Visual Analogy of Memory Individual Memory Cell
""""""" ~— All cells
dark
5 ; 0 address line = “1" —~_ READ
D‘% . activate line — SWITCH, R
g g RAW line = *1" (read) —"
¢ B T
i ||| neaie,
110001, = 49, Data written
‘when WRITE
SWITCH is ONT
address line = “1" WRITE
[SWITCH, W
Memory data register MDR line
23 24

23

Copyright 2000 N. AYDIN. All rights
reserved.

24

Memory Capacity

 Determined by two factors
1. Number of bits in the MAR
« 2Kwhere K = width of the register in bits
2. Size of the address portion of the instruction
« 4 bits allows 16 locations
« 8 bits allows 256 locations
« 32 bits allows 4,294,967,296 or 4 GB
+ Important for performance

Insufficient memory can cause a processor to work at
50% below performance

Memory Hierarchy

« This storage organization can be thought of as a pyramid:

A\ More Costly
/ w

3ns —>10ns

25ns— 50ns

* It volume is mounted. e

25

26

« Small amount of fast memory
« Sits between normal main memory and CPU
» May be located on CPU chip or module

Cache Virtual Memory
Block Transfer
Word Transfer f"—)k-/'\
~A « Cache memory enhances performance by providing faster
—— memory access speed.
CPU Cache Main Memory < Virtual memory enhances performance by providing

greater memory capacity, without the expense of adding
main memory.
Instead, a portion of a disk drive serves as an extension of main
memory.

« If a system uses paging, virtual memory partitions main
memory into individually managed page frames, that are
written (or paged) to disk when they are not immediately
needed.

27

28

RAM: Random Access Memory

Address fine

* DRAM (Dynamic RAM)
— Most common, cheap
— Volatile:
« must be refreshed (recharged with
power) 1000’s of times each second

* SRAM (static RAM)
— Faster than DRAM and more
expensive than DRAM
— Volatile

* Frequently small amount used in cache |
memory for high-speed access used

Transistor
Storage

capacitor

Bitbne Ground

ROM - Read Only Memory

» Permanent storage
— Non-volatile memory to hold software that is not
expected to change over the life of the system
* Used in...
— Microprogramming
— Library subroutines
— Systems programs (BIOS)
« initial boot instructions and diagnostics
— Function tables

29

Copyright 2000 N. AYDIN. All rights
reserved.

30

Types of ROM

» Written during manufacture
— Very expensive for small runs
« Programmable (once)
PROM
Needs special equipment to program
» Read “mostly”
Erasable Programmable (EPROM)
« Erased by UV
Electrically Erasable (EEPROM)
« Takes much longer to write than read
Flash memory
« Erase whole memory electrically

Types of External Memory

* SSD
— Fast
— Expensive (relatively)
Magnetic Disk
- RAID
— Removable
* Optical
— CD-ROM
— CD-Recordable (CD-R)
- CD-R/IW
- DVD
» Magnetic Tape

31 32
Computer Components-1/0 Input/Output Problems
CPU Main Memory
System : » Wide variety of
MAR = peripherals
T Delivering different
— : amounts of data
— % At different speeds
B — In different formats
110 Module n2 + All slower than CPU
< and RAM Do
« Need 1/O modules l
— gl [P Je ez
MAR = Memory address register
MBR = Memory buffer register
IO AR = Inputioutput address register
D BR = Inputioutput buffer register
33 34
33 34

Input/Output Module

1/0 Module Block Diagram « [nterface to CPU and

Mﬂrnl.lngl. | Memory

ot Lies smn o |nterface to one or more
[;

Contral Lines pel'lpherals

« |/O Module Function:
Control & Timing
CPU Communication
Device Communication
} Data Buffering

Links 1o

peripheral Error Detection

deviees

External Devices

External Device Block Diagram « External Devices:

— Human readable

Control Status Data bits -
signals from ‘amals to to and from « Screen, printer,
1/0 madule 1/0 module O module

keyboard
— Machine readable

omen Bofler * Monitoring and

Transducer control

— Communication

* Modem
Data (device-uniquel * Network Interface
to and from
envirtament Card (NIC)

35

Copyright 2000 N. AYDIN. All rights
reserved.

36

1/0 Steps

CPU checks 1/0 module device status
1/0 module returns status

If ready, CPU requests data transfer
1/0 module gets data from device

1/0 module transfers data to CPU
Variations for output, DMA, etc.

1/0 Architectures

« 1/O can be controlled in four general ways:
— Programmed 1/0
* Reserves a register for each 1/0 device.
« Each register is continually polled to detect data arrival.
— Interrupt-Driven 1/0
« Allows the CPU to do other things until 1/0 is requested.
— Direct Memory Access (DMA)

« Offloads I/0O processing to a special-purpose chip that takes
care of the details.

— Channel 1/0
* Uses dedicated 1/O processors.

37 38
Computer Components- Bus Bus
CPU Main Memory . . A .
System H * The physical connection that makes it possible to
MAR Bus A transfer data from one location in the computer system
e to another
L : + Group of electrical conductors for carrying signals
T E— from one location to another
BT * 4 kinds of signals
Data
L0 Modde o « Alphanumeric @
< + Numerical LI L
« instructions [T Iu!’I Il [T | | -
PG = Program couner Addresses T || S— T
Buffers IR = Instruction register)
o ey — Control signals
TR - nptoctiu bt v — Power (sometimes)
39 40
39 40
Bus Bus Characteristics
» Connect * Protocol

— CPU and Memory
— 1/0 peripherals:
« on same bus as CPU/memory or separate bus
« Physical packaging commonly called backplane
— Also called system bus or external bus
— Example of broadcast bus

— Part of printed circuit board called motherboard that
holds CPU and related components

— Documented agreement for communication
— Specification that spells out the meaning of each line
and each signal on each line

Throughput, i.e., data transfer rate in bits per
second

Data width in bits carried simultaneously

a2

41

Copyright 2000 N. AYDIN. All rights
reserved.

42

Bus types

» Data Bus
— Carries data
— Width is a key determinant of performance
« 8,16, 32, 64 bit
» Address bus
— Identify the source or destination of data
— Bus width determines maximum memory capacity of system
« e.g. 8080 has 16 bit address bus giving 64k address space
» Control Bus
— Control and timing information

« Memory read/write; 1/0 read/write; Transfer acknowledge; Bus request;
Bus grant; Interrupt request; Interrupt acknowledge; Clock; Reset

43

What do buses look like?

.) i Physical Realization of
— Parallel lines on circuit Bus Architecture

boards R

— Ribbon cables l
— Strip connectors on T v —

mother boards

Boards

. eg.PCI
— Sets of wires

44,

43 44
Point-to-point vs. Multipoint Motherboard
P o fese e Printed
Plug-in i con oo circuit
d i computer computer
Ethernet s, N0l CPU
and related
it AL - . components
- mren including
buses disk - S
ot backplane
examples of multipoint buses
Shared among
multiple devices
45 46
45 46

Motherboard

Intel 440BX Chipset
Diagram
(Chipset in Green)

Hicroprocessor

£§ 10E and

System HGHT Bus

47

Typical PC Interconnections

+ Bus interface bridges connect different bus types

Cache
cPu

i3
Etornar 1o F
b unit

Extornal CPU bus

| d:
HosuAGP Pouisa ok Network
[cosou
*
{ ’:SP ISA bus. BT 11 disk
Vi :
EAREAIEA
Monitor S —
o I

48,

47

Copyright 2000 N. AYDIN. All rights
reserved.

48

PCI Bus Connections

Required pins Optional pins
Address AD31-00] [AD63-32
and data PAR ~—> PAR64 64-bit data

REQG4 and address
ACK64 extension
PCl command C/BE3-0

e Interface
FRAME —<—>| {OCK
TRDY <«—> control
Interface RDY -« iNTA
control STOP - iNTe
DEVSEL —— INTC Interrupts
IDSEL —— iNTE
Emor PERR —<—>

reporting

SERR
Bus REQ
arbitration GNT —| —— TDO JTAG
e— TCK test
CLK
RST

[“—— IMS support
ST

Source: Copyright © PCI Pin List/PCI Special Interest Group, 1999.

49

50

Instructions

* Instruction
— Direction given to a computer
— Causes electrical signals to be sent through specific
circuits for processing
« Instruction set
— Design defines functions performed by the processor
— Differentiates computer architecture by the
* Number of instructions

« Complexity of operations performed by individual
instructions

« Data types supported

« Format (layout, fixed vs. variable length)
* Use of registers

« Addressing (size, modes)

« OPCODE: task
« Source OPERAND(s)
* Result OPERAND

 Explicit:

— included in instruction
« Implicit:

— default assumed

Instruction Elements

Addresses

— Location of data (register, memory)

Source

OPCODE OPERAND

Result
OPERAND

51

52

Instruction Format

» Machine-specific template that specifies
— Length of the op code
— Number of operands
— Length of operands

« Simple 32-bit Instruction Format

(10101010 101010102010101010101010

bit 0 78 31

op code address field

nﬂ e

Instruction Formats: CISC

code:
R = data register
B = base register

1BM mainframe formats (partial set)

o 8 12 15 X = index register
D = relative

register to indexed displacement

(oo [[[o=] == "

o 8 12 16 20 31

op code | R] Ry] By I Dy I register 1o storage

0 8 12 16 20 31

l op code I By | D | single operand

] 16 20 31

B O DO e

1] 8 16 20 32 36 47

53

Copyright 2000 N. AYDIN. All rights
reserved.

54

Instruction Formats: RISC

‘ op codel relative displacement | CALL instruction
31 29 0
[op Dude] Ro Inp code | immediate data | LOAD high 22 bits immediate
31 29 % 22 0
TSt —
‘ op code Ia | = |cu cnde| relative displacement | BRANCH
31 2928 25 22 0

[op code] Hm lop codel Rw1 ‘ 0 I alt space } sz] INTEGER instructions
(also, with 1 in bit 14, and
31 29 25 13 1413 5 0 bits 0-13 immediate address)

[oncote] Ry Jopcode] Ry [opcode@P) [Ry| FLOATING POINT instructons
a2 3 19 W 5 0

SPARC RISC formats (complete set)

Instruction Types

Data Transfer (load, store)
— Most common, greatest flexibility
— Involve memory and registers
— What’s a word ?
+ 167 327 64 bits?
Arithmetic
— Operators + -/ *~
— Integers and floating point
Logical or Boolean
— Relational operators: > < =
— Boolean operators AND, OR, XOR, NOR, and NOT
« Single operand manipulation instructions
— Negating, decrementing, incrementing

55 56
More Instruction Types Register Shifts and Rotates
« Bit manipulation instructions
Before shift <—— Before shift
— Flags to test for conditions AT
« Shift and rotate . N ‘
. Program control @|0|1|0|1|1|0|1|0! |1|o|o|1|0|1|1|0|
« Stack instructions After shift After shift
. . R a. Left logical shift register 1 bit b. Rotate right 1 bit
« Multiple data instructions o o
ign b
* 1/0 and machine control o[elo)
K
[elo]+1]e]
c. Right arithmetic shift 2 bits
57 58

Program Control Instructions

* Program control
— Jump and branch

— Subroutine call
and return

Calling program

305 instruction
306 instruction before call

307 CALL 425
308 instruction after call [Saves program
2 counter somewhere
Jumps to 425 /
Subroutine
425 first instruction 308
Returns to 426 instruction
308 .
435 nm-unj Reloads program counter
with original value (308)
-—

Causing return to instruction
after call

Stack Instructions

« Stack instructions
— LIFO method for organizing information
— Items removed in the reverse order from that in which
they are added

017 505

(a) Adding to the stack

Push Pop

59

Copyright 2000 N. AYDIN. All rights
reserved.

60

10

Fixed Location Subroutine Return Address Storage

55 CALL 70

— 56 next instruction
after subroutine

Most recent
return address

55 CALL 70
56 next instruction
after subroutine

Most recent
69 | 761 return address

69 56

70 70
Subroutine Subroutine
75 CALL 70

Jump to location
85 RETURN | indicated by 69

L

a. Subroutine called from loc.55

76 Jump to location
85 RETURN | indicated by 69

b. Subroutine re-called from 75,
within the subroutine

Multiple Data Instructions

+ Perform a single operation on multiple pieces of
data simultaneously
SIMD:
« Single Instruction, Multiple Data
Intel MMX™: 57 multimedia instruction
Register Commonly used in

A, : B, 1 c : D,
l l l l vector and array
Regn.terl:: " prOC.essi.ng
2 L= applications

RQE;‘E'I Aj+A, | B +B, 1 C+C, 1 D, vDZJ

61 62
Instruction Cycle Fetch Cycle
» Two steps: « Program Counter (PC) =
— Fetch holds address of next instruction to fetch
— Execute

Fetch Cycle Execute Cycle

Feteh Next Execute -
{ START i Instruction Instruetion HALT

* Processor fetches instruction from memory
location pointed to by PC

* Increment PC
— Unless told otherwise

« Instruction loaded into Instruction Register
(IR)

« Processor interprets instruction and performs
required actions

63 64
Execute Cycle Instruction Cycle State Diagram
« Processor-memory
— Data transfer between CPU and main memory
+ Processor 1/0 e e |
— Data transfer between CPU and 1/0 module
-+ Data processing [I L'::::‘:; [l“ﬁ::ﬁ':
— Some arithmetic or logical operation on data
Instruction Instruqiun Operand Data Operand
+ Control cocuion | decoung) \eaeuaton (0PSO (i
— Alteration of sequence of operations
* e.g.jump foch net it orveetordais
» Combination of above
65 66
65 66

Copyright 2000 N. AYDIN. All rights
reserved.

A simple example — A hypotetical machine

Address |

(a) Instruction format

| Magnirude

(b) Integer format

Program Counter (PC) = Address of instruction
Instruction Register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(¢) Internal CPU registers
0001 = Load AC from Memory
0010 = Srore AC to Memory
0101 = Add to AC from Memory

(d) Partial list of opcodes

A simple example —

Next figure illustrates a partial program
execution.

It adds the contents of the memory word at
address 940 to the contents of the memory word
at address 941 and stores the result in the address
941.

Here 3 instructions (3 fetch and 3 execute cycles)
are required

67 68
Example of Program Execution von Neumann Architecture (1945)
30Memory CPU Reg;fée;s 30Menmry cPU Regli:(l:ers . Stored prOgram COncept
:WWAC o e . .
302l_|2 sad 1640 IR auzl_lz 541 194 0]IR . Memory is addressed |Inear|y
oot P » Memory is addressed without regard to content
Memory CPU Registers| Memory CPU Registers| Central Processing Unit - ThIS IS_ a general
sifie [s Rl depicion of a von
302204 1] Wsoa|R| |3022041] ([E9aiMR Neumann system:
ppe LR W] et menoy | _ These computers
Memory CPU Registers Memory CPU Registers| employ a fetch-
Sofsoat [eoagad |olEes ?I S aaE Ac decode-execute cycle
:ju—-l 29 4_|1 IR :3 2941 29641|IR to run programs as
94 941 follows . . .
Step 5 Step 6
69 70,
69 70

von Neumann Architecture

« The control unit fetches the next instruction from
memory using the program counter to determine
where the instruction is located.

Central Progessing Unit

o) E——
=T
o

Main

Reglsters
e Memory

von Neumann Architecture

 The instruction is decoded into a language that
the ALU can understand.

Central Processing Unit

=
——c—
——

At Logie ="
Uit

Main

Registers Memory

71

Copyright 2000 N. AYDIN. All rights
reserved.

72

12

von Neumann Architecture

Any data operands required to execute the
instruction are fetched from memory and placed
into registers within the CPU.

Central Processing Unit

(o) ——)

Main
Memory

Registers

von Neumann Architecture

» The ALU executes the instruction and places
results in registers or memory.

Central Processing Unit

(o) ——)

Main
Memory

Registers

73

74

A virtual processor for understanding instruction cycle

Tine " il

Virtual Machine

Freeware Version 5.0.4
Expites July 1, 2009
Designed and written by Stu Westin
westin@ui.edu
The University of Rhode Island
Copyright © 2006. All rights reserved

Click image for program and usage detais

75

76

The VVM Machine

The Visible Virtual Machine (VVM) is based on a model of a
simple computer device called the Little Man Computer which
was originally developed by Stuart Madnick in 1965, and revised
in 1979.
The VVM is a virtual machine because it only appears to be a
functioning hardware device.
In reality, the VVVM "hardware" is created through a software
simulation.
One important simplifying feature of this machine is that it
works in decimal rather than in the traditional binary number
system.
Also, the VVVM works with only one form of data —

decimal integers.

Hardware Components of VVM

* 1/0 Log
— This represents the system console which shows the details of
relevant events in the execution of the program.
« Examples of events are the program begins, the program aborts, or
input or output is generated.
» Accumulator Register
— This register holds the values used in arithmetic and logical
computations.
It also serves as a buffer between input/output and memory.
« Legitimate values are any integer between -999 and +999.
« Values outside of this range will cause a fatal VM Machine error.
« Non integer values are converted to integers before being loaded into
the register.
* Instruction Cycle Display

This shows the number of instructions that have been
executed since the current program execution began.

77

Copyright 2000 N. AYDIN. All rights

reserved.

78

13

Hardware Components of VVM

Instruction Register (Instr. Reg.).
— This register holds the next instruction to be executed.
— divided into two parts:
« aone-digit operation code, and a two digit operand.
The Assembly Language mnemonic code for the operation code is
displayed below the register.
Program Counter Register (Prog. Ctr.).
— The two-digit integer value in this register "points" to the next instruction
to be fetched from RAM
— Most instructions increment this register during the execute phase of the
instruction cycle.
Legitimate values range from 00 to 99.
= A value beyond this range causes a fatal VVM Machine error.
RAM.
— The 100 data-word Random Access Storage is shown as a matrix of ten
rows and ten columns.
— The two-digit memory addresses increase sequentially across the rows and
run from 00 to 99.
= Each storage location can hold a three-digit integer value between -999 and +999.

Data and Addresses

« All data and address values are maintained as
decimal integers.

» The 100 data-word memory is addresses with
two-digit addressed in the range 00-99.

+ Each memory location holds one data-word
which is a decimal integer in the range -999 -
+999.

« Data values beyond this range cause a data

overflow condition and trigger a VVM system
error.

[~/ Sinple lcoping esanple 5 =
(o L A
77 DO WHILE & > 0 7 IHPIIT!
VVM o PRINT & 4r DO VHILE & > 0
P 2
Program o En 7 wob
Ed_t ::ﬂ e IW\II n\ s]leDIll -
itor 1 L0511 A 5- 0 then skip next St 99 Stere
o %g :['nq u‘auf] jun]E:v:nl:eu; ﬂup brp 04 [nz] If & >= 0 then skip nemt
1da 39 of A (don't need to) br 10 Jump out of locp (¥alus ¢ 0}
P‘rln brz 10 [Il!] If & = 0 jusp out of loop
- E oy B b T e R
Validate e 0: i;ﬂ;l]? e o 99 Sioes mw malue of &
% Zew0 0us emony Before Load B et
v Zero Dut Memorp Behors Load
Halp £
[| [=
81 82
. Hardrare View | Teace View | « Data value out of range.
PROCESSOR Tgigsgcondilion occurs when a data value exceeds the legitimate range -999 -
+999.
The condition will be detected while the data resides in the Accumulator
Register.
« Probable causes are an improper addition or subtraction operation, or invalid user input
* Undefined instruction.
This occurs when the machine attempts to execute a three-digit value in the
Rl Instruction Register which can not be interpreted as a valid instruction code
= 1 8 « Probable causes of this error are attempting to use a data value as an instruction, an improper
Evecuts 0901 399 60 610{ 710 539] 902901 398 602 Branch instruction, or failure to provide a Halt instruction in your program.
1,
sep g%%,’%%%%,’%&%’% + Program counter out of range.
3. [o06 006 06 003 006 030368 /006 068 (000 — Thi ister is i
—— D ﬁrir]wllst %?%ués when the Program Counter Register is incremented beyond the
B = 5_ Joon) 000 o 00a 000 /000 066 /000 oo [00a) N h
= — 6000 006 000 000|600 000 006 /00 000 000 « The likely cause is failure to include a Halt instruction in your program, or a branch to a high
I~ ShowSouceWindw [Tick 7_]00n/000/ 000000/ 000 1000/ 000 /000 /000 000 memory address.
©_ [oon) 000 o 002 006 /000 066 /000 oo [o0a « User cancel
Help Fenen 2 To0a00d oo 002 006 036 368 /066 068 (00 ’ . .
The user pressed the "Cancel” button during an Input or Output operation
83 84

Copyright 2000 N. AYDIN. All rights

reserved.

14

The Language Instructions

« Load Accumulator (5nn) [LDA nn]

The content of RAM address nn is copied to the Accumulator Register, replacing
the current content of the register.

— The content of RAM address nn remains unchanged. The Program Counter
Register is incremented by one.
+ Store Accumulator (3nn) [STO nn]or [STA nn]

The content of the Accumulator Register is copied to RAM address nn, replacing
the current content of the address.

— The content of the Accumulator Register remains unchanged.
The Program Counter Register is incremented by one.
* Add (1nn) [ADD nn]

The content of RAM address nn is added to the content of the Accumulator
Register, replacing the current content of the register

— The content of RAM address nn remains unchanged.
The Program Counter Register is incremented by one.
Subtract (2nn) [SUB nn]
The content of RAM address nn is subtracted from the content of the
Accumulator Register, replacing the current content of the register.
— The content of RAM address nn remains unchanged.
The Program Counter Register is incremented by one.

The Language Instructions

» Input (901) [IN] or [INP]

— A value input by the user is stored in the Accumulator Register, replacing
the current content of the register.

— Note that the two-digit operand does not represent an address in this
instruction, but rather specifies the particulars of the 1/0 operation (see
Output).

The operand value can be omitted in the Assembly Language format.
— The Program Counter Register is incremented by one with this instruction.
» Output (902) [OUT] or [PRN]

— The content of the Accumulator Register is output to the user.

The current content of the register remains unchanged. Note that the two-
digit operand does not represent an address in this instruction, but rather
specifies the particulars of the 1/0 operation (see Input).

The operand value can be omitted in the Assembly Language format.
— The Program Counter Register is incremented by one with this instruction.

85 86
The Language Instructions The Language Instructions
» Branch if Zero (7nn) [BRZ nn] » Branch (6nn) [BR nn] or[BRU nn] or [JMP nn]

This is a conditional branch instruction. This is an unconditional branch instruction.
If the value in the Accumulator Register is zero, then the current value of The current value of the Program Counter Register is replaced by the
the Program Counter Register is replaced by the operand value nn (the operand value nn
result is that the next instruction to be executed will be taken from address _ The result is that the next instruction to be executed will be taken from
nn rather than from the next sequential address). address nn rather than from the next sequential address.

— Otherwise (Accumulator >< 0), the Program Counter Register is — The value of the Program Counter Register is not incremented with this
}ncremﬁmed by one ([_hllls g&e ne>)<t instruction to be executed will be taken instruction.
rom the next sequential address). .

. P » No Operation (4nn) [NOP] or [NUL]
* Bran_ch_ if POSI.t!Ve or Zerq (8nn.) [BRP nn] This instruction does nothing other than increment the Program Counter

This is a conditional branch instruction. Register by one

— Ifthe value in the Accumulator Register is nonnegative (i.e., >= 0), then the — The operand value nn is ignored in this instruction and can be omitted in
current value of the Program Counter Register is replaced by the operand the Assembly Language format.
value nn (the result is that the next instruction to be executed will be taken + This instruction is unigue to the VM and is not part of the Little Man Model
from address nn rather than from the next sequential address). « Halt (0nn) [HLT] or [COB]
Otherwise (Accumulator < 0), the Program Counter Register is incremented S 5
by one (thus the next instruction to be executed will be taken from the next Program execution is terminated.
sequential address). The operand value nn is ignored in this instruction and can be omitted in

the Assembly Language format.
87 88
87 88

Embedding Data in Programs

« Data values used by a program can be loaded
into memory along with the program.

* In Machine or Assembly Language form simply
use the format "snnn" where s is an optional
sign, and nnn s the three-digit data value.

* In Assembly Language, you can specify "DAT
snnn" for clarity.

Address vs. Content

Address

» Addresses are consecutive
« Content may be Data or Instructions

« Content: Instructions
- Op code Address
« Operation code [
« Arbitrary mnemonic |
— Operand
« Object to be manipulated
— Data or Address of data

89 90

Copyright 2000 N. AYDIN. All rights
reserved. 15

Assembly Language

* Specific to a CPU

+ 1to 1 correspondence between assembly
language instruction and binary (machine)
language instruction

» Mnemonics (short character sequence) represent
instructions

+ Used when programmer needs precise control
over hardware,

—e.g., device drivers

Simple Program: Add 2 Numbers

addresses > 80

» Write instructions

Mailbox | Mnemonic | Code | Instruction Description

» Assume data is stored in mailboxes with

00 IN 901 |;input 1st Number
01 STO 85 399 |;store data

02 IN 901 |;input 2nd Number
03 ADD 85 199 |;add 1st # to 2nd #
04 ouT 902 |;output result

05 coB 000 |;stop

85 DAT 00 000 |;data

91 92
Find Positive Difference of 2 Numbers

00 |IN 901

01 STO10 | 310

02 |IN 901

03 |STO11 |311

04 |sSuB 10 |210

05 BRPO08 | 808 stest

06 | LDA10 |510 ;if negative, reverse order

07 |suB11 |211

08 | ouT 902 ;print result and

09 | COB 000 ;stop

10 |DATO00 | 000 ;used for data

11 | DAT 00 | 000 ;used for data

93 94,

93 94

Copyright 2000 N. AYDIN. All rights
reserved.

16

