
Copyright 2000 N. AYDIN. All rights

reserved. 1

BLM5207

Computer Organization

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

Digital Logic

1

Introduction

• In the latter part of the nineteenth century,
George Boole incensed philosophers and
mathematicians alike when he suggested that
logical thought could be represented through
mathematical equations.

– How dare anyone suggest that human thought could
be encapsulated and manipulated like an algebraic
formula?

• Computers, as we know them today, are
implementations of Boole’s Laws of Thought.

– John Atanasoff and Claude Shannon were among the
first to see this connection

2

Introduction

• In the middle of the twentieth century, computers
were commonly known as thinking machines and
electronic brains.

– Many people were fearful of them.

• Nowadays, we rarely ponder the relationship
between electronic digital computers and human
logic.

• Computers are accepted as part of our lives.

– Many people, however, are still fearful of them.

• In this lecture, you will learn the simplicity that
constitutes the essence of the machine.

3

Boolean Algebra

• Boolean algebra is a mathematical system for the

manipulation of variables that can have one of

two values.

– In formal logic, these values are true and false.

– In digital systems, these values are on and off, 1 and

0, or high and low.

• Boolean expressions are created by performing

operations on Boolean variables.

– Common Boolean operators include AND, OR, and

NOT.

4

Boolean Algebra

• A Boolean operator can be

completely described using a truth

table.

– The truth table for the Boolean

operators AND, OR, and NOT are

shown at the right.

• The AND operator is also known as a

Boolean product.

• The OR operator is the Boolean sum.

• The NOT operation is most often

designated by an overbar.

– It is sometimes indicated by a prime mark (′′)

or an “elbow” ().
5

Boolean Algebra

• A Boolean function has:

– At least one Boolean variable,

– At least one Boolean operator, and

– At least one input from the set {0,1}.

• It produces an output that is also a member of the

set {0,1}.

• Now you know why the binary numbering system is so

handy in digital systems.

6

1 2

3 4

5 6

mailto:naydin@yildiz.edu.tr

Copyright 2000 N. AYDIN. All rights

reserved. 2

Boolean Algebra

• The truth table for the Boolean function:

– To make evaluation of

the Boolean function

easier, the truth table

contains extra (shaded)

columns to hold

evaluations of subparts

of the function.

7

Boolean Algebra

• As with common arithmetic, Boolean

operations have rules of precedence.

– The NOT operator has

highest priority,

followed by AND and

then OR.

– This is how we chose

the (shaded) function

subparts in our table.

8

Boolean Algebra

• Digital computers contain circuits that implement

Boolean functions.

• The simpler that we can make a Boolean

function, the smaller the circuit that will result.

– Simpler circuits are cheaper to build, consume less

power, and run faster than complex circuits.

• With this in mind, we always want to reduce our

Boolean functions to their simplest form.

• There are a number of Boolean identities that

help us to do this.

9

Boolean Algebra

• Most Boolean identities have an AND (product)

form as well as an OR (sum) form.

• First group is rather intuitive:

10

Boolean Algebra

• Second group of Boolean identities:

• Thirdgroup of Boolean identities:

11

Boolean Algebra

• We can use Boolean identities to simplify the

function as

follows:

12

7 8

9 10

11 12

Copyright 2000 N. AYDIN. All rights

reserved. 3

Boolean Algebra

• Sometimes it is more economical to build a

circuit using the complement of a function (and

complementing its result) than it is to implement

the function directly.

• DeMorgan’s law provides an easy way of finding

the complement of a Boolean function.

• Recall DeMorgan’s law states:

13

Boolean Algebra

• DeMorgan’s law can be extended to any number

of variables.

• Replace each variable by its complement and

change all ANDs to ORs and all ORs to ANDs.

• Thus, we find the complement of:

as:

14

Boolean Algebra

• Through our exercises in simplifying Boolean

expressions, we see that there are numerous ways

of stating the same Boolean expression.

– These synonymous forms are logically equivalent.

– Logically equivalent expressions have identical truth

tables.

• In order to eliminate as much confusion as

possible, designers express Boolean functions in

standardized or canonical form.

15

Boolean Algebra

• There are two canonical forms for Boolean
expressions:

– sum-of-products

– product-of-sums

• Recall the Boolean product is the AND operation and the
Boolean sum is the OR operation.

• In the sum-of-products form, ANDed variables are
ORed together.

– For example:

• In the product-of-sums form, ORed variables are
ANDed together:

– For example:

16

Boolean Algebra

• It is easy to convert a function to sum-of-

products form using its truth table.

– We are interested in the

values of the variables that

make the function true (=1).

– Using the truth table, we list

the values of the variables

that result in a true function

value.

– Each group of variables is

then ORed together.

17

Boolean Algebra

• The sum-of-products form for our function is:

– We note that this function is

not in simplest terms.

– Our aim is only to rewrite

our function in canonical

sum-of-products form.

18

13 14

15 16

17 18

Copyright 2000 N. AYDIN. All rights

reserved. 4

Logic Gates

• We have looked at Boolean functions in abstract

terms.

• In this section, we see that Boolean functions are

implemented in digital computer circuits called

gates.

• A gate is an electronic device that produces a

result based on two or more input values.

– In reality, gates consist of one to six transistors, but

digital designers think of them as a single unit.

– Integrated circuits contain collections of gates suited

to a particular purpose.
19

Logic Gates

• The three simplest gates are the AND, OR, and NOT

gates.

• They correspond directly to their respective Boolean

operations, as you can see by their truth tables.

20

Logic Gates

• Another very useful gate is the exclusive OR

(XOR) gate.

– The output of the XOR operation is true only when

the values of the inputs differ.

– Note the special symbol  for the XOR operation.

21

Logic Gates

• NAND and NOR are two very important gates.

22

Logic Gates

• NAND and NOR

are known as

universal gates

because they are

inexpensive to

manufacture, and

any Boolean

function can be

constructed using

only NAND or only

NOR gates.
23

Logic Gates

• Gates can have multiple inputs and more than

one output.

• A second output can be provided for the

complement of the operation.

24

19 20

21 22

23 24

Copyright 2000 N. AYDIN. All rights

reserved. 5

Digital Components

• The main thing to remember is that combinations

of gates implement Boolean functions.

• The circuit below implements the Boolean

function:

– We simplify our Boolean expressions so that we can

create simpler circuits.

25

Combinational Circuits

• We have designed a circuit that implements the

Boolean function:

• This circuit is an example of a combinational

logic circuit.

• Combinational logic circuits produce a specified

output (almost) at the instant when input values

are applied.
26

Combinational Circuits

• Combinational logic circuits give us many useful

devices.

• One of the simplest

is the half adder,

which finds the sum

of two bits.

• We can gain some insight as to the construction

of a half adder by looking at its truth table

27

Combinational Circuits

• As we see, the sum can be found using the XOR

operation and the carry using the AND operation.

28

Combinational Circuits

• We can change our half adder into to a full adder

by including gates for processing the carry bit.

• The truth table for a full adder and its

implementation:

29

Combinational Circuits

• Just as we combined half adders to make a full

adder, full adders can be connected in series.

• The carry bit ripples from one adder to the next;

hence, this configuration is called a ripple-carry

adder.

– Today’s systems employ more efficient adders.

30

25 26

27 28

29 30

Copyright 2000 N. AYDIN. All rights

reserved. 6

Combinational Circuits

• Decoders are another important type of
combinational circuit.

– Among other things, they are useful in selecting a
memory location according a binary value placed on
the address lines of a memory bus.

• Address decoders with n inputs can select any of
2n locations.

31

Combinational Circuits

• This is what a 2-to-4 decoder looks like on the

inside.

– If x = 0 and y = 1, which output line is enabled?

32

Combinational Circuits

• A multiplexer does just the opposite of a decoder.

• It selects a single output from several inputs.

– The particular input

chosen for output is

determined by the value

of the multiplexer’s

control lines.

– To be able to select

among n inputs, log2n

control lines are

needed.

33

Combinational Circuits

• This is what a 4-to-1 multiplexer looks like on

the inside.

– If S0 = 1 and S1 = 0, which input is transferred to the

output?
34

Sequential Circuits

• Combinational logic circuits are perfect for

situations when we require the immediate

application of a Boolean function to a set of

inputs.

• There are other times, however, when we need a

circuit to change its value with consideration to

its current state as well as its inputs.

– These circuits have to remember their current state.

• Sequential logic circuits provide this

functionality for us.

35

Sequential Circuits

• As the name implies, sequential logic circuits

require a means by which events can be

sequenced.

• State changes are controlled by clocks.

– A clock is a special circuit that sends electrical pulses

through a circuit.

• Clocks produce electrical waveforms such as the

one shown below.

36

31 32

33 34

35 36

Copyright 2000 N. AYDIN. All rights

reserved. 7

Sequential Circuits

• State changes occur in sequential circuits only

when the clock ticks.

• Circuits can change state on the rising edge,

falling edge, or when the clock pulse reaches its

highest voltage.

37

Sequential Circuits

• Circuits that change state on the rising edge, or

falling edge of the clock pulse are called edge-

triggered.

• Level-triggered circuits change state when the

clock voltage reaches its highest or lowest level.

38

Sequential Circuits

• To retain their state values, sequential circuits

rely on feedback.

• Feedback in digital circuits occurs when an

output is looped back to the input.

• A simple example of this concept is shown

below.

– If Q is 0 it will always be 0, if it is 1, it will always be

1. Why?

39

Sequential Circuits

• You can see how feedback works by examining

the most basic sequential logic components, the

SR flip-flop.

– The SR stands for set/reset.

• The internals of an SR flip-flop are shown below,

along with its block diagram.

40

Sequential Circuits

• The behavior of an SR flip-flop is described by a

characteristic table.

– Q(t) means the value of the output at time t.

– Q(t+1) is the value of Q after the next clock pulse.

41

Sequential Circuits

• The SR flip-flop actually has three inputs:

– S, R, and its current output, Q.

• Thus, we can

construct a truth

table for this circuit,

as shown at the left.

• Notice the two

undefined values.

– When both S and R

are 1, the SR flip-flop

is unstable.
42

37 38

39 40

41 42

Copyright 2000 N. AYDIN. All rights

reserved. 8

Sequential Circuits

• If we can be sure that the inputs to an SR flip-

flop will never both be 1, we will never have an

unstable circuit. This may not always be the case.

• The SR flip-flop can be modified to provide a

stable state when both inputs are 1.

– This modified flip-flop is

called a JK flip-flop, shown

at the left.

• The JK is in honor of Jack

Kilby.

43

Sequential Circuits

• At the left, we see how an SR flip-flop can be

modified to create a JK flip-flop.

• The characteristic table indicates that the flip-flop

is stable for all inputs.

44

Sequential Circuits

• Another modification of the SR flip-flop is the D

flip-flop, shown below with its characteristic

table.

– You will notice that the output of the flip-flop

remains the same during subsequent clock pulses.

– The output changes only when the value of D

changes.

45

Sequential Circuits

• The D flip-flop is the fundamental circuit of

computer memory.

– D flip-flops are usually illustrated using the block

diagram shown below.

• The next slide shows how these circuits are

combined to create a register.

46

Sequential Circuits

• This illustration shows

a 4-bit register

consisting of D flip-

flops.

• You will usually see its

block diagram (below)

instead.

47

Sequential Circuits

• A binary counter is

another example of a

sequential circuit.

• The low-order bit is

complemented at each

clock pulse.

– Whenever it changes

from 0 to 1, the next bit

is complemented, and

so on through the other

flip-flops.

48

43 44

45 46

47 48

Copyright 2000 N. AYDIN. All rights

reserved. 9

Designing Circuits

• We have seen digital circuits from two points of

view:

– Digital analysis

• explores the relationship between a circuits inputs and its

outputs.

– Digital synthesis

• creates logic diagrams using the values specified in a truth table.

• Digital systems designers must also be mindful of

the physical behaviors of circuits to include minute

propagation delays that occur between the time

when a circuit’s inputs are energized and when the

output is accurate and stable.
49

Designing Circuits

• Digital designers rely on specialized software to

create efficient circuits.

– Thus, software is an enabler for the construction of

better hardware.

• Of course, software is in reality a collection of

algorithms that could just as well be implemented

in hardware.

– Recall the Principle of Equivalence of Hardware and

Software.

50

Designing Circuits

• When we need to implement a simple,
specialized algorithm and its execution speed
must be as fast as possible, a hardware solution is
often preferred.

• This is the idea behind embedded systems, which
are small special-purpose computers that we find
in many everyday things.

• Embedded systems require special programming
that demands an understanding of the operation
of digital circuits, the basics of which you have
learned in this chapter.

51

Conclusion

• Computers are implementations of Boolean logic.

• Boolean functions are completely described by

truth tables.

• Logic gates are small circuits that implement

Boolean operators.

• The basic gates are AND, OR, and NOT.

• The XOR gate is very useful in parity checkers

and adders.

• The “universal gates” are NOR, and NAND.

52

Conclusion

• Computer circuits consist of combinational logic

circuits and sequential logic circuits.

• Combinational circuits produce outputs (almost)

immediately when their inputs change.

• Sequential circuits require clocks to control their

changes of state.

• The basic sequential circuit unit is the flip-flop:

– The behaviors of the SR, JK, and D flip-flops are the

most important to know.

53

49 50

51 52

53

