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Introduction

• In the latter part of the nineteenth century, 
George Boole incensed philosophers and 
mathematicians alike when he suggested that 
logical thought could be represented through 
mathematical equations.

– How dare anyone suggest that human thought could 
be encapsulated and manipulated like an algebraic 
formula?

• Computers, as we know them today, are 
implementations of Boole’s Laws of Thought.

– John Atanasoff and Claude Shannon were among the 
first to see this connection
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Introduction

• In the middle of the twentieth century, computers 
were commonly known as thinking machines and 
electronic brains.

– Many people were fearful of them.

• Nowadays, we rarely ponder the relationship 
between electronic digital computers and human 
logic. 

• Computers are accepted as part of our lives.

– Many people, however, are still fearful of them.

• In this lecture, you will learn the simplicity that 
constitutes the essence of the machine.
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Boolean Algebra

• Boolean algebra is a mathematical system for the 

manipulation of variables that can have one of 

two values.

– In formal logic, these values are true and false.

– In digital systems, these values are on and off, 1 and 

0, or high and low.

• Boolean expressions are created by performing 

operations on Boolean variables.

– Common Boolean operators include AND, OR, and 

NOT.
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Boolean Algebra

• A Boolean operator can be 

completely described using a truth 

table.

– The truth table for the Boolean 

operators AND, OR, and NOT are 

shown at the right.

• The AND operator is also known as a 

Boolean product.  

• The OR operator is the Boolean sum.

• The NOT operation is most often 

designated by an overbar. 

– It is sometimes indicated by a prime mark ( ′′ ) 

or an “elbow” ().
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Boolean Algebra

• A Boolean function has:

– At least one Boolean variable, 

– At least one Boolean operator, and 

– At least one input from the set {0,1}.  

• It produces an output that is also a member of the 

set {0,1}.

• Now you know why the binary numbering system is so 

handy in digital systems.
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Boolean Algebra

• The truth table for the Boolean function: 

– To make evaluation of 

the Boolean function 

easier, the truth table 

contains extra (shaded) 

columns to hold 

evaluations of subparts 

of the function.
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Boolean Algebra

• As with common arithmetic, Boolean 

operations have rules of precedence. 

– The NOT operator has 

highest priority, 

followed by AND and

then OR.

– This is how we chose 

the (shaded) function 

subparts in our table. 
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Boolean Algebra

• Digital computers contain circuits that implement 

Boolean functions.

• The simpler that we can make a Boolean 

function, the smaller the circuit that will result.

– Simpler circuits are cheaper to build, consume less 

power, and run faster than complex circuits.

• With this in mind, we always want to reduce our 

Boolean functions to their simplest form.

• There are a number of Boolean identities that 

help us to do this. 
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Boolean Algebra

• Most Boolean identities have an AND (product) 

form as well as an OR (sum) form.   

• First group is rather intuitive:
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Boolean Algebra

• Second group of Boolean identities:

• Thirdgroup of Boolean identities:

11

Boolean Algebra

• We can use Boolean identities to simplify the 

function as 

follows:
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Boolean Algebra

• Sometimes it is more economical to build a 

circuit using the complement of a function (and 

complementing its result) than it is to implement 

the function directly.

• DeMorgan’s law provides an easy way of finding 

the complement of a Boolean function.

• Recall DeMorgan’s law states:
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Boolean Algebra

• DeMorgan’s law can be extended to any number 

of variables.

• Replace each variable by its complement and 

change all ANDs to ORs and all ORs to ANDs.

• Thus, we find the complement of:

as:
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Boolean Algebra

• Through our exercises in simplifying Boolean 

expressions, we see that there are numerous ways 

of stating the same Boolean expression.

– These synonymous forms are logically equivalent.

– Logically equivalent expressions have identical truth 

tables.

• In order to eliminate as much confusion as 

possible, designers express Boolean functions in 

standardized or canonical form.
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Boolean Algebra

• There are two canonical forms for Boolean 
expressions: 

– sum-of-products 

– product-of-sums

• Recall the Boolean product is the AND operation and the 
Boolean sum is the OR operation.

• In the sum-of-products form, ANDed variables are 
ORed together.

– For example:

• In the product-of-sums form, ORed variables are 
ANDed together:

– For example:
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Boolean Algebra

• It is easy to convert a function to sum-of-

products form using its truth table.

– We are interested in the 

values of the variables that 

make the function true (=1).

– Using the truth table, we list 

the values of the variables 

that result in a true function 

value.

– Each group of variables is 

then ORed together.
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Boolean Algebra

• The sum-of-products form for our function is:

– We note that this function is 

not in simplest terms. 

– Our aim is only to rewrite 

our function in canonical 

sum-of-products form. 
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Logic Gates

• We have looked at Boolean functions in abstract 

terms.

• In this section, we see that Boolean functions are 

implemented in digital computer circuits called 

gates.

• A gate is an electronic device that produces a 

result based on two or more input values.

– In reality, gates consist of one to six transistors, but 

digital designers think of them as a single unit.

– Integrated circuits contain collections of gates suited 

to a particular purpose.
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Logic Gates

• The three simplest gates are the AND, OR, and NOT 

gates.

• They correspond directly to their respective Boolean 

operations, as you can see by their truth tables.
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Logic Gates

• Another very useful gate is the exclusive OR 

(XOR) gate.  

– The output of the XOR operation is true only when 

the values of the inputs differ.

– Note the special symbol  for the XOR operation.
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Logic Gates

• NAND and NOR are two very important gates.  
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Logic Gates

• NAND and NOR

are known as 

universal gates 

because they are 

inexpensive to 

manufacture, and 

any Boolean 

function can be 

constructed using 

only NAND or only 

NOR gates. 
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Logic Gates

• Gates can have multiple inputs and more than 

one output.

• A second output can be provided for the 

complement of the operation.
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Digital Components

• The main thing to remember is that combinations 

of gates implement Boolean functions.

• The circuit below implements the Boolean 

function:

– We simplify our Boolean expressions so that we can 

create simpler circuits.

25

Combinational Circuits

• We have designed a circuit that implements the 

Boolean function:

• This circuit is an example of a combinational 

logic circuit.

• Combinational logic circuits produce a specified 

output (almost) at the instant when input values 

are applied.
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Combinational Circuits

• Combinational logic circuits give us many useful 

devices.

• One of the simplest 

is the half adder, 

which finds the sum 

of two bits.

• We can gain some insight as to the construction 

of a half adder by looking at its truth table
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Combinational Circuits

• As we see, the sum can be found using the XOR

operation and the carry using the AND operation.
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Combinational Circuits

• We can change our half adder into to a full adder 

by including gates for processing the carry bit.

• The truth table for a full adder and its 

implementation:
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Combinational Circuits

• Just as we combined half adders to make a full 

adder, full adders can be connected in series.

• The carry bit ripples from one adder to the next; 

hence, this configuration is called a ripple-carry 

adder.

– Today’s systems employ more efficient adders. 
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Combinational Circuits

• Decoders are another important type of 
combinational circuit.

– Among other things, they are useful in selecting a 
memory location according a binary value placed on 
the address lines of a memory bus.

• Address decoders with n inputs can select any of 
2n locations. 
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Combinational Circuits

• This is what a 2-to-4 decoder looks like on the 

inside.

– If x = 0 and y = 1, which output line is enabled? 
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Combinational Circuits

• A multiplexer does just the opposite of a decoder.

• It selects a single output from several inputs.

– The particular input 

chosen for output is 

determined by the value 

of the multiplexer’s 

control lines.

– To be able to select 

among n inputs, log2n

control lines are 

needed. 
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Combinational Circuits

• This is what a 4-to-1 multiplexer looks like on 

the inside. 

– If S0 = 1 and S1 = 0, which input is transferred to the 

output? 
34

Sequential Circuits

• Combinational logic circuits are perfect for 

situations when we require the immediate 

application of a Boolean function to a set of 

inputs. 

• There are other times, however, when we need a 

circuit to change its value with consideration to 

its current state as well as its inputs.

– These circuits have to remember their current state.

• Sequential logic circuits provide this 

functionality for us. 
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Sequential Circuits

• As the name implies, sequential logic circuits 

require a means by which events can be 

sequenced. 

• State changes are controlled by clocks.

– A clock is a special circuit that sends electrical pulses 

through a circuit.

• Clocks produce electrical waveforms such as the 

one shown below.
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Sequential Circuits

• State changes occur in sequential circuits only 

when the clock ticks. 

• Circuits can change state on the rising edge, 

falling edge, or when the clock pulse reaches its 

highest voltage.
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Sequential Circuits

• Circuits that change state on the rising edge, or  

falling edge of the clock pulse are called edge-

triggered.

• Level-triggered circuits change state when the 

clock voltage reaches its highest or lowest level.

38

Sequential Circuits

• To retain their state values, sequential circuits 

rely on feedback.

• Feedback in digital circuits occurs when an 

output is looped back to the input.

• A simple example of this concept is shown 

below.

– If Q is 0 it will always be 0, if it is 1, it will always be 

1.  Why?
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Sequential Circuits

• You can see how feedback works by examining 

the most basic sequential logic components, the 

SR flip-flop.

– The SR stands for set/reset.

• The internals of an SR flip-flop are shown below, 

along with its block diagram.

40

Sequential Circuits

• The behavior of an SR flip-flop is described by a 

characteristic table.

– Q(t) means the value of the output at time t.  

– Q(t+1) is the value of Q after the next clock pulse.
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Sequential Circuits

• The SR flip-flop actually has three inputs: 

– S, R, and its current output, Q.

• Thus, we can 

construct a truth 

table for this circuit, 

as shown at the left.

• Notice the two 

undefined values.  

– When both S and R

are 1, the SR flip-flop 

is unstable.
42
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Sequential Circuits

• If we can be sure that the inputs to an SR flip-

flop will never both be 1, we will never have an 

unstable circuit. This may not always be the case.

• The SR flip-flop can be modified to provide a 

stable state when both inputs are 1.

– This modified flip-flop is 

called a JK flip-flop, shown 

at the left.

• The JK is in honor of Jack 

Kilby.
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Sequential Circuits

• At the left, we see how an SR flip-flop can be 

modified to create a JK flip-flop.

• The characteristic table indicates that the flip-flop 

is stable for all inputs.
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Sequential Circuits

• Another modification of the SR flip-flop is the D 

flip-flop, shown below with its characteristic 

table.

– You will notice that the output of the flip-flop 

remains the same during subsequent clock pulses. 

– The output changes only when the value of D 

changes.
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Sequential Circuits

• The D flip-flop is the fundamental circuit of 

computer memory. 

– D flip-flops are usually illustrated using the block 

diagram shown below.

• The next slide shows how these circuits are 

combined to create a register.
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Sequential Circuits

• This illustration shows 

a 4-bit register 

consisting of D flip-

flops. 

• You will usually see its 

block diagram (below) 

instead.
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Sequential Circuits

• A binary counter is 

another example of a 

sequential circuit.

• The low-order bit is 

complemented at each 

clock pulse.

– Whenever it changes 

from 0 to 1, the next bit 

is complemented, and 

so on through the other 

flip-flops.
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Designing Circuits

• We have seen digital circuits from two points of 

view:

– Digital analysis 

• explores the relationship between a circuits inputs and its 

outputs.

– Digital synthesis 

• creates logic diagrams using the values specified in a truth table.

• Digital systems designers must also be mindful of 

the physical behaviors of circuits to include minute 

propagation delays that occur between the time 

when a circuit’s inputs are energized and when the 

output is accurate and stable.
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Designing Circuits

• Digital designers rely on specialized software to 

create efficient circuits.

– Thus, software is an enabler for the construction of 

better hardware.

• Of course, software is in reality a collection of 

algorithms that could just as well be implemented 

in hardware.

– Recall the Principle of Equivalence of Hardware and 

Software.
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Designing Circuits

• When we need to implement a simple, 
specialized algorithm and its execution speed 
must be as fast as possible, a hardware solution is 
often preferred.

• This is the idea behind embedded systems, which 
are small special-purpose computers that we find 
in many everyday things.

• Embedded systems require special programming 
that demands an understanding of the operation 
of digital circuits, the basics of which you have 
learned in this chapter.
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Conclusion

• Computers are implementations of Boolean logic.

• Boolean functions are completely described by 

truth tables.

• Logic gates are small circuits that implement 

Boolean operators. 

• The basic gates are AND, OR, and NOT.

• The XOR gate is very useful in parity checkers 

and adders.

• The “universal gates” are NOR, and NAND.
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Conclusion

• Computer circuits consist of combinational logic 

circuits and sequential logic circuits.

• Combinational circuits produce outputs (almost) 

immediately when their inputs change.

• Sequential circuits require clocks to control their 

changes of state.

• The basic sequential circuit unit is the flip-flop: 

– The behaviors of the SR, JK, and D flip-flops are the 

most important to know.
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