

1

Introduction

- In the latter part of the nineteenth century, George Boole incensed philosophers and mathematicians alike when he suggested that logical thought could be represented through mathematical equations.
- How dare anyone suggest that human thought could be encapsulated and manipulated like an algebraic formula?
- Computers, as we know them today, are implementations of Boole's Laws of Thought.
- John Atanasoff and Claude Shannon were among the first to see this connection

2

Boolean Algebra

- Boolean algebra is a mathematical system for the manipulation of variables that can have one of two values.
- In formal logic, these values are true and false.
- In digital systems, these values are on and off, 1 and 0 , or high and low.
- Boolean expressions are created by performing operations on Boolean variables.
- Common Boolean operators include AND, OR, and NOT.

Boolean Algebra

- A Boolean operator can be completely described using a truth table.
- The truth table for the Boolean operators AND, OR, and NOT are shown at the right.
- The AND operator is also known as a Boolean product.
- The OR operator is the Boolean sum.
- The NOT operation is most often designated by an overbar.
- It is sometimes indicated by a prime mark (") or an "elbow" (\neg).

Boolean Algebra

- A Boolean function has:
- At least one Boolean variable,
- At least one Boolean operator, and
- At least one input from the set $\{0,1\}$.
- It produces an output that is also a member of the set $\{0,1\}$.

[^0]

7

Boolean Algebra

- Digital computers contain circuits that implement Boolean functions.
- The simpler that we can make a Boolean function, the smaller the circuit that will result.
- Simpler circuits are cheaper to build, consume less power, and run faster than complex circuits.
- With this in mind, we always want to reduce our Boolean functions to their simplest form.
- There are a number of Boolean identities that help us to do this.

9

Boolean Algebra

- Second group of Boolean identities:

- Thirdgroup of Boolean identities:

Boolean Algebra

- Most Boolean identities have an AND (product) form as well as an OR (sum) form.
- First group is rather intuitive:

Identity Name	AND Form	OR Form
Identity Law	$1 \mathbf{x}=\mathbf{x}$	$0+\mathbf{x}=\mathbf{x}$
Null Law	$0 \mathbf{x}=0$	$1+\mathbf{x}=1$
Idempotent Law	$\mathbf{x x}=\mathbf{x}$	$\mathbf{x}+\mathbf{x}=\mathbf{x}$
Inverse Law	$\mathbf{x} \overline{\mathbf{x}}=0$	$\mathbf{x}+\overline{\mathbf{x}}=1$

10

Boolean Algebra

- We can use Boolean identities to simplify the function $F(X, y, z)=(X+y)(X+\bar{y})(\bar{x} \bar{z})$ as follows:

11

Boolean Algebra

- Sometimes it is more economical to build a circuit using the complement of a function (and complementing its result) than it is to implement the function directly.
- DeMorgan's law provides an easy way of finding the complement of a Boolean function.
- Recall DeMorgan's law states:

$$
\overline{(x y)}=\bar{x}+\bar{y} \quad \text { and } \quad \overline{(x+y)}=\bar{x} \bar{y}
$$

13

Boolean Algebra

- Through our exercises in simplifying Boolean expressions, we see that there are numerous ways of stating the same Boolean expression.
- These synonymous forms are logically equivalent.
- Logically equivalent expressions have identical truth tables.
- In order to eliminate as much confusion as possible, designers express Boolean functions in standardized or canonical form.

15

Boolean Algebra

- It is easy to convert a function to sum-ofproducts form using its truth table.

$\mathbf{F}(x, y, z)$	$=x \bar{z}+y$		
x	y	z	$x \bar{z}+y$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

> - We are interested in the values of the variables that make the function true $(=1)$.
> - Using the truth table, we list the values of the variables that result in a true function value.
> - Each group of variables is then ORed together.

Boolean Algebra

- DeMorgan's law can be extended to any number of variables.
- Replace each variable by its complement and change all ANDs to ORs and all ORs to ANDs.
- Thus, we find the complement of:

$$
\begin{aligned}
F(X, Y, Z) & =(X Y)+(\bar{X} Z)+(Y \bar{Z}) \\
\bar{F}(X, Y, Z) & =\overline{(X Y)+(\bar{X} Z)+(Y \bar{Z})} \\
& =(\overline{X Y})(\bar{X} Z)(\bar{Y} \bar{Z}) \\
& =(\bar{X}+\bar{Y})(X+\bar{Z})(\bar{Y}+Z)
\end{aligned}
$$

as:

14

Boolean Algebra

- There are two canonical forms for Boolean expressions:
- sum-of-products
- product-of-sums
- Recall the Boolean product is the AND operation and the Boolean sum is the OR operation.
- In the sum-of-products form, ANDed variables are ORed together.

$$
\text { - For example: } \quad \mathbf{F}(\mathbf{x}, \mathrm{y}, \mathbf{z})=\mathbf{x y}+\mathbf{x z}+\mathbf{y} \mathbf{z}
$$

- In the product-of-sums form, ORed variables are ANDed together:

$$
\text { - For example: } \quad F(x, y, z)=(x+y)(x+z)(y+z)
$$

16

Boolean Algebra

- The sum-of-products form for our function is:

18

Logic Gates

- We have looked at Boolean functions in abstract terms.
- In this section, we see that Boolean functions are implemented in digital computer circuits called gates.
- A gate is an electronic device that produces a result based on two or more input values.
- In reality, gates consist of one to six transistors, but digital designers think of them as a single unit.
- Integrated circuits contain collections of gates suited to a particular purpose.

19

Logic Gates

- Another very useful gate is the exclusive OR (XOR) gate.
- The output of the XOR operation is true only when the values of the inputs differ.

- Note the special symbol \oplus for the XOR operation.

Logic Gates

- NAND and NOR are known as universal gates because they are inexpensive to manufacture, and any Boolean function can be constructed using only NAND or only
 NOR gates.

Logic Gates

- Gates can have multiple inputs and more than one output.
- A second output can be provided for the complement of the operation.

Digital Components

- The main thing to remember is that combinations of gates implement Boolean functions.
- The circuit below implements the Boolean function: $F(x, y, z)=x+\bar{y} z$

- We simplify our Boolean expressions so that we can create simpler circuits.

25

Combinational Circuits

- Combinational logic circuits give us many useful devices.

Inputs	Outputs		
\mathbf{X}	Y	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- One of the simplest is the half adder, which finds the sum of two bits.
- We can gain some insight as to the construction of a half adder by looking at its truth table

Combinational Circuits

- We can change our half adder into to a full adder by including gates for processing the carry bit.
- The truth table for a full adder and its implementation:

Combinational Circuits

- As we see, the sum can be found using the XOR operation and the carry using the AND operation.

Inputs	Outputs		
X	Y	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

${ }_{28}$
28

Combinational Circuits

- Just as we combined half adders to make a full adder, full adders can be connected in series.
- The carry bit ripples from one adder to the next; hence, this configuration is called a ripple-carry adder.

- Today's systems employ more efficient adders.

Combinational Circuits

- Decoders are another important type of combinational circuit.
- Among other things, they are useful in selecting a memory location according a binary value placed on the address lines of a memory bus.

- Address decoders with n inputs can select any of 2^{n} locations.

31

Combinational Circuits

- A multiplexer does just the opposite of a decoder.
- It selects a single output from several inputs.

- The particular input chosen for output is determined by the value of the multiplexer's control lines.

To be able to select among n inputs, $\log _{2} \mathrm{n}$ control lines are needed.

Combinational Circuits

- This is what a 2-to-4 decoder looks like on the inside.

- If $\mathrm{x}=0$ and $\mathrm{y}=1$, which output line is enabled?

Combinational Circuits

- This is what a 4-to-1 multiplexer looks like on the inside.

- If $\mathrm{S}_{0}=1$ and $\mathrm{S}_{1}=0$, which input is transferred to the output?

34

Sequential Circuits

- Combinational logic circuits are perfect for situations when we require the immediate application of a Boolean function to a set of inputs.
- There are other times, however, when we need a circuit to change its value with consideration to its current state as well as its inputs.
- These circuits have to remember their current state.
- Sequential logic circuits provide this functionality for us.

Sequential Circuits

- As the name implies, sequential logic circuits require a means by which events can be sequenced.
- State changes are controlled by clocks.
- A clock is a special circuit that sends electrical pulses through a circuit.
- Clocks produce electrical waveforms such as the one shown below.

Sequential Circuits

- State changes occur in sequential circuits only when the clock ticks.
- Circuits can change state on the rising edge, falling edge, or when the clock pulse reaches its highest voltage.

37

Sequential Circuits

- To retain their state values, sequential circuits rely on feedback.
- Feedback in digital circuits occurs when an output is looped back to the input.
- A simple example of this concept is shown below.

- If Q is 0 it will always be 0 , if it is 1 , it will always be 1 . Why?

39

Sequential Circuits

- The behavior of an SR flip-flop is described by a characteristic table.

- $\mathrm{Q}(\mathrm{t})$ means the value of the output at time t .
- $\mathrm{Q}(\mathrm{t}+1)$ is the value of Q after the next clock pulse.

Sequential Circuits

- Circuits that change state on the rising edge, or falling edge of the clock pulse are called edgetriggered.
- Level-triggered circuits change state when the clock voltage reaches its highest or lowest level.

38

Sequential Circuits

- You can see how feedback works by examining the most basic sequential logic components, the SR flip-flop.
- The SR stands for set/reset.
- The internals of an SR flip-flop are shown below, along with its block diagram.

40

- S, R, and its current output, Q.

- Thus, we can construct a truth table for this circuit, as shown at the left.
- Notice the two undefined values.
- When both S and R are 1, the SR flip-flop is unstable.

Sequential Circuits

- If we can be sure that the inputs to an SR flipflop will never both be 1 , we will never have an unstable circuit. This may not always be the case.
- The SR flip-flop can be modified to provide a stable state when both inputs are 1 .

- This modified flip-flop is called a JK flip-flop, shown at the left.
- The JK is in honor of Jack Kilby.

Sequential Circuits

- Another modification of the SR flip-flop is the D flip-flop, shown below with its characteristic table.
- You will notice that the output of the flip-flop remains the same during subsequent clock pulses.
- The output changes only when the value of D changes.

Sequential Circuits

- At the left, we see how an SR flip-flop can be modified to create a JK flip-flop.
- The characteristic table indicates that the flip-flop is stable for all inputs.
 ${ }_{43}$

Sequential Circuits

- The D flip-flop is the fundamental circuit of computer memory.
- D flip-flops are usually illustrated using the block diagram shown below.
- The next slide shows how these circuits are combined to create a register.

46

Sequential Circuits

- This illustration shows a 4-bit register consisting of D flipflops.
- You will usually see its block diagram (below) instead.

Sequential Circuits

- A binary counter is another example of a sequential circuit.
- The low-order bit is complemented at each clock pulse.
- Whenever it changes from 0 to 1 , the next bit is complemented, and so on through the other flip-flops.

Designing Circuits

- We have seen digital circuits from two points of view:
- Digital analysis
- explores the relationship between a circuits inputs and its outputs.
- Digital synthesis
- creates logic diagrams using the values specified in a truth table.
- Digital systems designers must also be mindful of the physical behaviors of circuits to include minute propagation delays that occur between the time when a circuit's inputs are energized and when the output is accurate and stable.

49

Designing Circuits

- When we need to implement a simple, specialized algorithm and its execution speed must be as fast as possible, a hardware solution is often preferred.
- This is the idea behind embedded systems, which are small special-purpose computers that we find in many everyday things.
- Embedded systems require special programming that demands an understanding of the operation of digital circuits, the basics of which you have learned in this chapter.
- Computers are implementations of Boolean logic.
- Boolean functions are completely described by truth tables.
- Logic gates are small circuits that implement Boolean operators.
- The basic gates are AND, OR, and NOT.
- The XOR gate is very useful in parity checkers and adders.
- The "universal gates" are NOR, and NAND.

Conclusion

Designing Circuits

- Digital designers rely on specialized software to create efficient circuits.
- Thus, software is an enabler for the construction of better hardware.
- Of course, software is in reality a collection of algorithms that could just as well be implemented in hardware.
- Recall the Principle of Equivalence of Hardware and Software.

Conclusion

- Computer circuits consist of combinational logic circuits and sequential logic circuits.
- Combinational circuits produce outputs (almost) immediately when their inputs change.
- Sequential circuits require clocks to control their changes of state.
- The basic sequential circuit unit is the flip-flop:
- The behaviors of the SR, JK, and D flip-flops are the most important to know

[^0]: - Now you know why the binary numbering system is so handy in digital systems.

