BLM5207 Computer Organization

Prof. Dr. Nizamettin AVDIN

naydin@yildiz.edu.tr

http://www3.vildiz.edu.tr/~navdin

Course Details

Course Code : BLM5207

• Course Name: Computer Organization

• Credit : 3

• Level : Graduate

• Schedule : Friday 19:00-21:50

Course web page:

http://www3.vildiz.edu.tr/~naydin/na BiD.htm

• Instructors : Nizamettin AYDIN

Room: D-128

Email: naydin@yildiz.edu.tr, nizamettinaydin@gmail.com

1 2

Course Objective

- Learning properties of various computer architectures
- Learning about design (hardware) issues of computing.

Course Content

- Revisison of Some Fundamental Concepts
- Computer System, Computer Evolution and Performance
- Cache, Cache Optimization, Virtual Memory
- Pipeline, Instruction-Level Parallelism, Data-Level Parallelism
- GPU Architectures, Thread-Level Parallelism, Multicore Processors.

3

Course Prerequisite

- Basic knowledge in
 - -Computer organization
 - -Digital circuit design
 - -High-level language programming, e.g. C or Java
 - -Assembly programming, e.g. Intelx86 or MC680xx.

Recommended Texts

· Recommended texts

4

- The Architecture of Computer Hardware and Systems Software: An Information Technology Approach, Irv Englander
- Computer Science AN OVERVIEW, J. Glenn Brookshear, Dennis Brylow
- Computer Architecture: A Quantitative Approach, John L. Hennessy, David A. Patterson
- Computer Organization and Architecture: Designing for Performance, William Stallings
- Computer Organization and Design, David A. Patterson and John L. Hennessy
- Computer System Architecture, M. Morris Mano
- Logic and Computer Design Fundamentals, M. Morris Mano, Charles Kime
- ...

6

5

Copyright 2000 N. AYDIN. All rights reserved.

Course Outline

- Revision of Fundamental Concepts
- Fundamentals of Quantitative Design & Analysis (**Chapter 1**)
- Instruction Set Principals (Appendix A)
- Instruction Pipelining (Appendix C)
- Memory Hierarchy Design (Appendix B & Chapter 2)
- Instruction-Level Parallelism (Chapter 3)
- Data-Level Parallelism (Chapter 4)
- Thread-Level Parallelism (Chapter 5)

Assesment

Midterm : 35%
 Final : 40%
 Homework : 20%
 Attendance&Participation : 05%

Rules of the Conduct

- No eating /drinking in class
 - except water

7

- Cell phones must be kept outside of class or switched-off during class
- No talking with your peers
- No late arrival or early leave to/from the lecture
- No web surfing and/or unrelated use of computers
 - when computers are used in class or lab

The Computer Revolution

- Progress in computer technology
 - Underpinned by Moore's Law
- · Makes novel applications feasible
 - Computers in automobiles
 - Cell phones

8

- Human genome project
- World Wide Web
- Search Engines
- Computers are pervasive

9 10

Rules of the Conduct

- You are responsible for checking the class web page often for announcements.
 - http://www3.yildiz.edu.tr/~naydin/na_BiD.htm
- · Academic dishonesty and cheating
 - will not be tolerated
 - will be dealt with according to university rules and regulations
 - http://www.yok.gov.tr/content/view/475/
 - Presenting any work that does not belong to you is also considered academic dishonesty.

Classes of Computers

- Desktop computers
 - General purpose, variety of software
 - Subject to cost/performance tradeoff
- · Server computers
 - Network based
 - High capacity, performance, reliability
- Embedded computers
 - Hidden as components of systems
 - Stringent power/performance/cost constraints
- Supercomputers

16

15

Application software Written in high-level language System software Compiler: translates HLL code to machine code Operating System: service code Handling input/output Managing memory and storage Scheduling tasks & sharing resources Hardware Processor, memory, I/O controllers

- · Communication and resource sharing
- \bullet Local area network (LAN): Ethernet
 - Within a building
- Wide area network (WAN: the Internet
- · Wireless network: WiFi. Bluetooth

21 22

27 28

39 4

Intel IA-64 / Itanium

Explicit Parallel Instruction Computer

• IA-64

• Implementations: Merced (2001), McKinley (2002), Montecite (2 core, 2006), Tukwila (4-core 2009), Poulson (Q4, 2009, 8-core)

• Architecture is now called Itanium

45 46

47 48

Copyright 2000 N. AYDIN. All rights reserved.

Supercomputers

- IBM cluster
- · 6480 nodes with
 - Dual core Opteron 1.8 GHz
 - 2 * PowerXCell 8i 3.2 GHz (12.8 GFlops)
- Infiniband connection fabric (16 Gbit/s per link)
- FAT tree interconnect
- 100 Tbyte DRAM memory
- 216 I/O nodes
- 2.35 MW power
- MPI programming
- Size: 296 racks, **550 m²** This is huge!!

BlueGene/L IBM

51 52

Data Center (IBM)

58 57

Can we match the human brain ???

- Performance = 100 Billion (10^11) Neurons * 1000 (10³) Connections/Neuron * 200 (2 * 10²) Calculations Per Second Per Connection = 2 * 10^16 Calculations Per Second
- Memory = 100 Billion (10¹1) Neurons * 1000 (10³) Connections/Neuron * 10 bytes (information about connection strength and adress of output neuron, type of synapse) = 10^15 bytes = 1 PB = 1000 TB
- How far off are we?

Blue brain research

- Software replica of a column of the neocortex
 - 85% of brains total mass
 - required for language, learning, memory and complex thought
 - the essential first step to simulating the whole brain
- Next: include circuitry from other brain regions and eventually the whole brain.

59 60

Copyright 2000 N. AYDIN. All rights reserved.

63 64

