
Name-surname : Email :
Student no : Signature :

Final 1 (01.06.2007)
________________________SENG2202- Computer Architecture________________________
__
Q1. a. Write the main instruction types of any general-purpose computer? (5)

b. What are the main features of a superscalar architecture? (5)
c. What is the difference between SRAM and DRAM interms of application? (5)

__
Q2. A one-address computer system has an 8 bit accumulator and 12 bit address bus. If the content of memory

location 1F0 is the binary number 11000011;
a. what is the corresponding decimal value when the number represents an unsigned integer number? (4)
b. what is the corresponding decimal value when the number represents a two's complement number? (4)

 c. Assuming that the most significant bit is parity bit, what is the corresponding letter when the number
represents an ASCII character (hint: ASCII character is represented by 7 bits and 41H represents A)? (4)

 d. Suppose the content of accumulator is 01000011. In this case what are the values of the overflow and carry
flags after the following instruction is executed: ADD (1F0). (8)

__
Q3. Assuming the processor described in question 2 has maximum 16 instructions:

a. How many bits are needed for the op-code field of the instruction? (4)
b. How many bits are needed for the instruction register? (4)
c. What is the total memory size in kByte? (4)

 d. For the memory location 1F0, find the Tag, Line, and Word values in hexadecimal format for a direct-
mapped cache, when tag-id=4 bits, line-id=6 bits, word-id=2 bits. (8)

__

Q4. The following code is a part of an assembler program written for a three-

address machine type processor. Identify the type of all possible
dependencies in this code. (true data or write-read dependency, output or write-

write dependency, antidependency or read-write dependency) (15)

__
Q5. In a microprocessor, a program consisting of 200 instructions takes 400 ns to complete.

a. What will be the time required to complete a single machine instruction cycle? (5)
b. If each machine instruction cycle requires 4 clock cycles to be completed, what is the clock frequency of the
processor ? (5)

__
Q6. A system has 16 virtual pages and uses byte addressing. If the page size is 1024 Byte,

a. Determine the virtual memory size as kBytes. (5)
b. How many bits this virtual memory address requires? (5)

__
Q7. Write a simple VVM Assembly program that adds the number entered from the keyboard and the data in
memory location 20. If the result is positive, it is saved in memory location 30; if the result is negative, it is saved
in memory location 40. (10)
__
Q8. If the given decimal number is (-12.75), find the corresponding 32 bit IEEE-754 format floating point number

in hexadecimal. (10)
__
Q9. “ADD 10” is an instruction line of an assembler program. What will be the operand for this instruction if the

addressing mode is; (10)
a. Absolute?, b. Direct?, c. Indirect?, d. Register indirect?

 I1: ADD R7, R5, R6
 I2: MUL R8, R7, R4
 I3: ADD R4, R2, R1
 I4: DIV R8, R1, R3

__
VVM instruction set (nn indicates an address location in the RAM), for example;
machine code 510 corresponds to Assembly code LDA 10 (or lda 10).

Load Accumulator (5nn) [LDA nn] The content of RAM address nn is copied to the Accumulator Register, replacing the current content
of the register. The content of RAM address nn remains unchanged. The Program Counter Register is incremented by one.
Store Accumulator (3nn) [STO nn] or [STA nn] The content of the Accumulator Register is copied to RAM address nn, replacing the
current content of the address. The content of the Accumulator Register remains unchanged. The Program Counter Register is
incremented by one.
Add (1nn) [ADD nn] The content of RAM address nn is added to the content of the Accumulator Register, replacing the current content
of the register. The content of RAM address nn remains unchanged. The Program Counter Register is incremented by one.
Subtract (2nn) [SUB nn] The content of RAM address nn is subtracted from the content of the Accumulator Register, replacing the
current content of the register. The content of RAM address nn remains unchanged. The Program Counter Register is incremented by one.
 Input (901) [IN] or [INP] A value input by the user is stored in the Accumulator Register, replacing the current content of the register.
Note that the two-digit operand does not represent an address in this instruction, but rather specifies the particulars of the I/O operation
(see Output). The operand value can be omitted in the Assembly Language format. The Program Counter Register is incremented by one
with this instruction.
Output (902) [OUT] or [PRN] The content of the Accumulator Register is output to the user. The current content of the register remains
unchanged. Note that the two-digit operand does not represent an address in this instruction, but rather specifies the particulars of the I/O
operation (see Input). The operand value can be omitted in the Assembly Language format. The Program Counter Register is incremented
by one with this instruction.
Branch if Zero (7nn) [BRZ nn] This is a conditional branch instruction. If the value in the Accumulator Register is zero, then the current
value of the Program Counter Register is replaced by the operand value nn (the result is that the next instruction to be executed will be
taken from address nn rather than from the next sequential address). Otherwise (Accumulator >< 0), the Program Counter Register is
incremented by one (thus the next instruction to be executed will be taken from the next sequential address).
Branch if Positive or Zero (8nn) [BRP nn] This is a conditional branch instruction. If the value in the Accumulator Register is
nonnegative (i.e., >= 0), then the current value of the Program Counter Register is replaced by the operand value nn (the result is that the
next instruction to be executed will be taken from address nn rather than from the next sequential address). Otherwise (Accumulator < 0),
the Program Counter Register is incremented by one (thus the next instruction to be executed will be taken from the next sequential
address).
Branch (6nn) [BR nn] or[BRU nn] or [JMP nn] This is an unconditional branch instruction. The current value of the Program Counter
Register is replaced by the operand value nn. The result is that the next instruction to be executed will be taken from address nn rather
than from the next sequential address. The value of the Program Counter Register is not incremented with this instruction.
No Operation (4nn) [NOP] or [NUL] This instruction does nothing other than increment the Program Counter Register by one. The
operand value nn is ignored in this instruction and can be omitted in the Assembly Language format. (This instruction is unique to the
VVM and is not part of the Little Man Model.)
Halt (0nn) [HLT] or [COB] Program execution is terminated. The operand value nn is ignored in this instruction and can be omitted in
the Assembly Language format.

Embedding Data in Programs
Data values used by a program can be loaded into memory along with the program. In Machine or Assembly Language form simply use
the format "snnn" where s is an optional sign, and nnn is the three-digit data value. In Assembly Language, you can specify "DAT snnn"
for clarity.

SENG2202 - MIDTERM 1 ANSWERS
__
A1. a.

Data storage; Data processing; Data movement; Program flow control
b.
A superscalar implementation of a processor architecture is one in which common instructions can be

initiated simultaneously and executed independently
c.
SRAM is used for cache memory; DRAM is used for main memory.

__
A2. binary 11000011:
 a. 195

b. -61
c. If the most significant bit is parity bit, ASCII character represented by 11000011 is 100 0011 (43 in
hexadecimal) corresponding to capital letter C.

d. Content of accumulator is 01000011. “ADD (1F0)” means the following addition (content of 1F0 is
the binary number 11000011).

1 Carry in
01000011

 + 11000011
01000110

 1 Carry out
 Overflow flag is 0 (because carry in and carry out are the same), carry flag is 1 (because carry out is 1).
__
A3.

a. log216 = 4 bits are needed for opcode field
b. Instruction is op-code+operand (address). Addres is 12 bits. IR size = 4 + 12 = 16 bits
c. Total memory size = 212 = 210+2 = 22×210 = 4 kByte
d. First, write the address in binary format: (1F0)16 = (0001 1111 0000)2

Then define the Tag, Line, and Word values:

Tag-id← 000111110000 →Word-id

 Line-id

 Tag-id = 0001 = 1; Line-id = 00111100 = 3C; Word-id = 0000 = 0
__
A4.

true data or write-read dependency : I1, I2
 I1: ADD R7, R5, R6
 I2: MUL R8, R7, R4
 I3: ADD R4, R2, R1
 I4: DIV R8, R1, R3

output or write-write dependency : I2, I4

 I1: ADD R7, R5, R6
 I2: MUL R8, R7, R4
 I3: ADD R4, R2, R1
 I4: DIV R8, R1, R3

antidependency or read-write dependency : I2, I3

 I1: ADD R7, R5, R6
 I2: MUL R8, R7, R4
 I3: ADD R4, R2, R1
 I4: DIV R8, R1, R3

__
A5.

a. The time required to complete a single machine instruction cycle = 400 ns / 200 = 2 ns.
b. Clock cycle = 2 ns / 4 = 0.5 ns ; Clock frequency = 1 / Clock cycle = 1 / (0.5×10-9) = 2×109 Hz = 2 GHz.

__
A6.

A system has 16 virtual pages and uses byte addressing. If the page size is 1024 Byte,
a. Virtual memory size = 16×1024 Bytes = 16×210 Bytes = 16 kBytes.
b. 16 kBytes = 16×210 Bytes = 24×210 Bytes = 210+4 Bytes = 214 Bytes;

So, virtual memory address requires 14 bits.
__
A7.

One solution is as follows:

00 in // input number
01 add 20 // accumulator + content of (20)
02 brp 05 // if +ve jump to 05
03 sto 40 // else store –ve number in (30)
04 jmp 06 // jump (branch) to 06
05 sto 30 // save the +ve number in (30)
06 hlt // stop

__
A8.

Step 1. Convert the number to binary
 (12.75)10 = (1100.11)2

Step 2. Normalize the binary number to 1
 (1100.11)2 = (1.10011×200000011)2

Step 3. Add bias (127) to exponent to obtain biased exponential format
 (1100.11)2 = (1.10011×200000011+01111111)2 = (1.10011×210000010)2

 S = 1, BE = 10000010, and M = 10011000000000000000000

(-12.75)10 = (1 10000010 10011000000000000000000)floating point format= (C14C0000)floating point format in HEX
__
A9.

a. The operand is 10 itself
b. The operand is in the memory address 10
c. The operand is in the memory cell pointed to by the memory address 10
d. The operand is in the memory cell pointed to by the register 10

