
1

1

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr

naydin@ieee.org
http://www.yildiz.edu.tr/~naydin

Biosignals and Systems Frequency Transformations
Probing a Signal

• Complex signals such as the EEG signal shown previously
could be analyzed by probing with reference signals

• Crosscorrelation provides a mechanism for finding out if
sinusoids are embedded in a complicated signal.

• For example, we could crosscorrelate the EEG signal with
sinusoids having frequencies we think may be embedded in the
signal.

• If the crosscorrelation function shows a high value at some
time shift (τ), that would suggest the presence of our sinusoid, or
other reference signal, at that time shift (or, equivalently, at that
phase shift).

2

Crosscorrelation with Sinusoids

0 1 2 3 4 5 6 7 8

-5

0

5

Time (sec)

-20 -15 -10 -5 0 5 10 15 20
-20

-10

0

10

20

Lags(n)

Cross Correlation

0 10 20 30 40 50 60
0

50

100

150

200

Maximum Correlation

Frequency (Hz)

The lower curve shows
the maximum
crosscorrelation between
sinewaves at different
frequencies and the EEG
signal shown in the upper
plot.

The upper plot also shows
one of the sinewaves used
and the middle plot shows
the crosscorrelation
obtained for this particular
sinewave.

(For this sinewave, the
maximum correlation occurs
close to zero lag.)

3

•Using crosscorrelation to probe the contents of a signal works well if
we know what we are looking for.

•In the previous example, twenty five sinusoids were used to probe the
EEG signal using crosscorrelation, but we still may have missed some
important frequencies.

•If we are probing with sinusoids, and the signal we are probing is
periodic, (or can be taken as periodic), the answer to the question of
which frequencies to use is found in the Fourier Series Theorem.

•The Fourier Series Theorem states that any periodic signal, no matter
how complicated, can be represented by a unique sum of sinusoids;
specifically, a series of sinusoids that are the same, or multiples of the
signal frequency.

Probing with Sinusoids

4

The Fourier Series Theorem

f
T1

1
=

()Fundamental cos cos= =

2

2
1π

π
f t

t

T

To put the Fourier series theorem in mathematical terms, note that
if the period of a periodic function xT(t) is T, then the base or
“fundamental frequency” is:

and the base cosine wave would be:

() ()Series n nf t
nt

T
n= =

 =cos cos , , ,...2

2
1 2 31π

π

and the series of harmonically related cosine waves
becomes:

5

The Fourier Series Theorem (continued)

()Series n C
nt

T
nn n= +

 =cos , , ,...

2
1 2 3

π
θ

()

x t
C

C
nt

T
f

C
C nf t

T n n
n

n n
n

() cos

cos

= + +

+ +

=

∞

=

∞

∑

∑

0

1
1

0

1

2

2

2

π
θ

π θ

 or in terms of

 =
2

 1

The Fourier Series Theorem states that a periodic signal only
consists of a series of harmonically related sinusoids:

The Fourier Series Theorem simply states that any periodic
function, x(t), can be completely and equivalently represented
by a summation of this series:

where xT(t) is a periodic function of period T, and the first term, C0 (the
DC term) , accounts for any non-zero average value of the signal. 6

2

The Fourier Series Theorem (continued)

() ()x t
a

a nf t b nf tp n
n

n
n

() cos sin= + +
=

∞

=

∞

∑ ∑0

1 12
2 2π π1 1

The Fourier sinusoidal series can also be represented in terms of a
sine and cosine series. Substituting in the sine/cosine representation:

()

()

a
T

x t nf t dt n

b
T

x t nf t dt n

n

T

n

T

= =

= =

∫

∫

2
2 0 1 2

2
2 0 1 2

1

0

1
0

() cos , , ,...

() sin , , ,...

π

π

To find the coefficients an and bn simply correlate x(t) with the
cosine and sine waves at the various frequencies, 2πnf1.

7

The Fourier Series Theorem (continued)

r
T

x t nf t dt nxy n

T

() () cos() , , ,...θ π θ= + =∫
1

2 1 2 31

0

An alternate method could be used based on correlation with a
single sinusoid.

However, for each harmonic (i.e., each value of n), we would need to
find the specific phase shift θ that maximizes the cross correlation
rxy(θ).

(Set the derivative, drxy(θ)/dθ, to zero, solve for θ, then find the
crosscorrelation at that value of θ.)

This is not too difficult to do using a computer program such as
MATLAB, and the approach was used to find the sinusoidal
components in the first figure, but it is not as easy as the simple
correlation method particularly for hand calculations.

8

The Fourier Series Theorem (continued)

()

()
x (t)

C
C nf t n

C a b b
a

T n n
n

n n n n
n

n

= + − =

= + = −

=

∞

−

∑0
1

1

2 2 1

2
2 1 2 3cos , , ,...

tan

π θ

θ

where: and

The single sinusoid representation (cos(2πft + θ)) is
usually a more useful representation of the Fourier
series, but the coefficients are still often determined
using correlation with pure sine and cosines.

From the cosine and sine coefficients (an and bn) the
magnitude and phase of the single sinusoid
representation can be determined using the
conversions below.

9

Bilateral Transformation

• Since xT(t) can be equivalently represented by the
Fourier series, the series of sine and cosine
coefficients, an and bn, or the equivalent single
sinusoid, Cn and θn, these coefficients are as good a
representation of xT(t) as xT(t) itself.

• For this reason, representing a signal by its Fourier
series is known as a “bilateral transformation.

x t
C

a ,b
n n

n n

()
,

 or

⇔

θ

Time Frequency

Representation Representation

10

Frequency Representation
• The transformation based on sinusoids is especially

useful because of the unique frequency characteristics of
a sinusoid.

• A sinusoid contains energy at only one frequency.

• Thus, the sinusoidal components of a signal are also the
frequency components of a signal; that is, the spectral
characteristics of the signal or just “spectrum.”

• A complete description of a waveform’s frequency
characteristics consists of two plots:
– a plot of the components’ magnitude verses frequency
– a plot of the components’ phase verses frequency.

11

Frequency Spectrum

0 0.1 0.2 0.3 0.4 0.5
-8

-6

-4

-2

0

2

4

6

8

Time (sec)

x(
t)

Time Domain

0 5 10 15 20
0

2

4

6

8

Frequency (Hz)

M
a

gn
itu

de

Frequency Domain

0 5 10 15 20
0

20

40

60

80

Frequency (Hz)

P
ha

se
 (

de
g

)

Each sinusoidal
component gives
us a single point
on the two
frequency curves
(magnitude and
phase) at a
frequency given
to the component
number n;
specifically:

f
n

T
nf= =

2
2

1

π
π

Correlation with a 10 Hz sinusoid gives the magnitude
and phase characteristics of x(t) at 10 Hz. 12

3

Symmetry

Table 3-1 Function Symmetries

Function
Name

Symmetry Coefficient Values

Even x(t) = x(-t) bnn = 0

Odd x(t) = -x(-t) ann = 0

Half-wave x(t) = x(T - t) ann = bnn = 0; for n even

Some waveforms are symmetrical or anti-
symmetrical about t = 0, so that one or the other of
the components, an or bn will be zero.

13

Symmetries (continued)

-1.5 -1 -0.5 0 0.5 1 1.5
-2

-1

0

1

2

x(
t)

Symmetries

A) Even: x(t) = x(-t)

-1.5 -1 -0.5 0 0.5 1 1.5
-2

-1

0

1

2

x(
t)

B) Odd: x(t) = -x(-t)

-1.5 -1 -0.5 0 0.5 1 1.5
-2

-1

0

1

2

Time (sec)

x(
t)

C) Half-Wave: x(t) = x(T-t)

14

Example 3-2 Find the Fourier Transform of the triangle waveform defined
below. Find the first four Fourier Transform components.

x t
t t

t
()

.

. .
=

< ≤
< ≤

0 5

0 5 10

Solution. Find the cosine (an) and sine (bn) coefficients. Then
convert to magnitude (Cn) and phase (θn) if desired.

To find bn

[]

[] ()

b
T

x t nf t dt t nt dt

n
nt nt nt

n
n n n

n
n

n

T

= =

= −

− =
−

=
− −

= − −

∫ ∫

=

2
2 2 2

1

2
2 2 2

1

2

1

2
1

2

1

4

1

6

1

8
159 080 053 040

1

0 0

1

2 2 0

5

2 2

() sin() sin()

sin() cos()

sin() cos() cos()

, , , . , . , . , .

.

π π

π
π π π

π
π π π

π
π

π π π π

15

Example 3-2 (Continued)

To find the first term a0.

a
x(t) =

T
x(t) dt tdt

tT0

0

2

0

5

0

5

2

1 1

1 2
125= = = =∫ ∫

. .

.

To find the rest of the an terms:

[]

[] ()

a
T

x t nf t dt t nt dt

n
nt nt nt

n
n n n

n
n

n

T

= =

= −

= + + = −

= − − − −

∫ ∫
2

2 2 2

1

2
2 2 2

1

2
1

1

2
1

1
0

1

9
0 101 0 012 0

1

0 0

5

2 2 0

5

2 2 2 2

2 2

() cos() cos()

cos() sin()

cos() sin) cos()

, , , . , , . ,

.

.

π π

π π π π

π
π π π

π
π

π π =

16

()
C a b

b
a

n n n

n
n

n

n

= + =

= − = −

= − − = − − − = −

−

2 2

1

180 58 122 90 180 77 103 90

 .187, .080, .054, .040

58deg(2), - 90deg(3), - 77deg(2), - 90(3)deg

nd rd nd rdθ

θ

tan

() deg, deg, () deg, deg

These two coefficient terms can then be combined
into the single sinusoidal representation as magnitude
(Cn) and phases (θn) using the equations given
previously.

Care must be taken in computing the angle to insure
that it represents the proper quadrant:

Example 3-2 (Continued)

17

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Frequency(Hz)

|C
n|

Example 3-1 (Continued)

A plot of the magnitude coefficients of the first four terms shows a
frequency spectrum where the magnitude decreases with
increasing frequency.

Frequency Spectrum

18

4

Fourier Series
Complex Representation

() ()

() ()

cos

sin

2
1

2

2
1

2

1
2 1 2 1

1
2 1 2 1

π

π

π π

π π

nf t e e

nf t
j

e e

j nf t j nf t

j nf t j nf t

= +

= −

− −

− −

 and

C
T

x t j nf tdt nn

T

e= − =∫
1 2 0 1 2 31

0

() , , , ...π

Euler’s identity allows us to describe the sine and cosine
functions in terms of imaginary exponentials

Using the complex representation of a sinusoid, the Fourier
Transformation correlation equations can be written as a single
equation:

where: C
a jb

n
n n=

−
2

19

Fourier Transform
Complex Representation

C
a b

a b

b

a
b

a

n
n n

n n

n

n

n

n

n

= + =
+

= +

= −

 = −

 = −

− − −

Re Im .

tan
Im

Re
tan tan

2 2
2 2

2 2

1 1 1

2
707

2

2

 θ

The magnitude and the phase components can be obtained
from the complex an and bn:

So the magnitude of Cn is equal to 0.707 times the magnitude of
the sinusoidal components and the angle of Cn is equal to the
phase of the sinusoidal component.

Hence the complex variable Cn contains both sine and cosine
coefficients, and the individual components are easily
determined from the complex representation.

20

Complex Fourier Series

x t C j nf t
n

n

e() =
= −∞

∞

∑ 2 1π

The Fourier series equation is also know as the inverse Fourier
Transform.

In complex form it requires the summation to be done for n = ± ∞:

Although they are succinct, the complex form of the Fourier
Transform and Inverse Fourier Transform may not be as useful for
hand calculations.

However, the complex form is used by MATLAB and most other
computer Fourier Transform routines.

21

The Sampling Theorem

•Time-slicing, better known as “sampling,” has a
peculiar effect on the sampled signal’s spectrum:

it generates a mirror image of the spectrum about a
frequency that is half of that used to sample the
signal.

•If the sampling frequency is fs, then the spectrum
above fs/2 will be the mirror image of that below fs/2.

The frequency fs/2 is sometimes referred to as the
“Nyquist frequency.”

•The generation of additional frequencies not in the
original signal is termed “aliasing.”

22

Aliasing

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Frequency (Hz)

M
ag

ni
tu
de

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Frequency (Hz)

M
ag

ni
tu
de

A B

Normal Aliased

Left spectrum: If there are no frequencies in the original data above fs/2,
then the frequencies created by sampling are separate from the original.

Right spectrum: If frequencies exist in the original signal greater than fs/2,
then the new frequencies become intermixed with the original frequencies
and it is not possible to figure out which is which. The original signal is
corrupted. 23

Aliasing (continued)

• Since the Fourier Transform is bilateral, if you cannot determine the
original spectrum from the one in the computer in this confused
condition, you cannot determine the original signal from the signal
stored in the computer.

– The frequencies above the Nyquist frequency have hopelessly corrupted the
signal stored in the computer.

• Fortunately, the converse is also true. If there are no corrupting
frequencies in the original signal (i.e., the signal contains no
frequencies above twice the sampling frequency), the spectrum in
the computer will be a true reflection of the signal’s spectrum if we
eliminate the extra frequencies by filtering.

• This leads to the famous “Sampling Theorem” of Shannon:
– the original signal can be recovered from a sampled signal provided the sampling

frequency is twice the maximum frequency contained in the original:

fs > fmax/2

24

5

25

Data Truncation

• A digitized waveform must necessarily be truncated to
the length of the memory storage array, a process
described as “windowing.”

• The windowing process can be thought of as multiplying
the data by some window shape.

• If the waveform is simply truncated and no further
shaping is performed on the resultant windowed
waveform (as is often the case),
– then the window shape is rectangular.

• The data length will largely determine spectral resolution

26

Spectral Resolution

f
n

T
nf T T=

N

nfs

= =
1

 where also equals:

f
nf

N
s=

The frequencies obtained by the Fourier Transform depend on the
period:

where N is the total number of points in the data vector.

Since the spacing between frequencies on the spectral curve is
proportional to 1/T, a longer effective T will lead to a spectrum
with more closely spaced points, a spectrum with higher
frequency resolution

The frequency, f, can also be written as:

This equation is often used in the MATLAB routines in the
generation of the horizontal axis of a frequency plot.

27

Truncation and Zero Padding

0 1 2 3 4 5 6 7 8 9 10

-1

-0.5

0

0.5

1

x 104

0 1 2 3 4 5 6 7 8 9 10

-1

-0.5

0

0.5

1

x 104

E
E

G

0 1 2 3 4 5 6 7 8 9 10

-1

-0.5

0

0.5

1

x 104

Time (sec)

EEG data at it
original length.

Truncated or
shortened EEG
data.

EEG data
lengthened using
“zero padding:”
adding zeros to the
end of the original
data

28

Zero Padding (continued)

0 0.2 0.4 0.6 0.8
0

0.5

1

Time Domain

0 1 2 3 4 5
0

10

20

30

Frequency Domain

0 0.5 1 1.5
0

0.5

1

0 1 2 3 4 5
0

10

20

30

0 2 4 6
0

0.5

1

Time (sec)
0 1 2 3 4 5

0

10

20

30

Frequency (Hx)

Adding zeros to
the end of the
original data make
the effective
period, T, longer
increasing the
apparent
resolution of the
spectrum.

While no new
information is
gained, it does
perform an
interpolation of the
spectrum.

29

Power Spectrum

• The Power Spectrum is commonly defined as the Fourier
Transform of the autocorrelation function.

• In continuous and discrete notation, the Power Spectrum
equation becomes:

PS(f) = r (t)
j nf t

 dt

PS(n) = r (n)
j nf Ts

xx

T

xx
n=

N-

e

e

−

−

∫

∑

2

2

1

0

1

0

1

π

π

30

6

Power Spectrum (continued)

• In the direct approach, the Power Spectrum is
calculated as the magnitude squared of the Fourier
Transform of the waveform of interest:

PS(f) = |X(f)|2

• The Power Spectrum does not contain phase
information
– so the Power Spectrum is not a bilateral transformation

• it is not possible to reconstruct the signal from the Power Spectrum.

• Since the Power Spectrum does not contain phase
information, it is applied in situations where phase is
not considered useful.

31

Spectral Averaging
• Just as time signals can be averaged, Power Spectra

can be averaged.

• Even if only one signal is available, isolated segments of
the data can be used.

• The Power Spectra determined from each segment is
averaged to produce a spectrum that better represents
the broad, or “global,” features of the spectrum.

• This approach is popular when the available waveform is
only a sample of a longer signal and spectral analysis
can only estimate the real spectrum.

• When the Power Spectrum is based on a direct
application of the Fourier Transform followed by
averaging, it is commonly referred to as an average
“periodogram.” 32

Spectral Averaging (continued)

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

3500

Frequency (Hz)

P
ow

er
 S

p
ec

tr
um

 (d
b

)

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

3500

Frequency (Hz)

P
ow

er
 S

p
ec

tr
um

 (d
b

)

Power spectra obtained from
a waveform consisting of a
100-Hz sine wave and white
noise with (right side) and
without (left side) averaging.

In the un-averaged
spectrum, a spike at 100 Hz
is clearly seen.

For the averaged spectrum,
the 100-Hz component is no
longer visible;

however, the averaging
technique produces a better
estimate of the white noise
spectrum which should be a
flat horizontal line.

33

Spectral Averaging (continued)

• One of the
most popular
procedures to
evaluate the
average
periodogram
is attributed to
Welch which
uses
overlapping
segments. (A
shaping window
is sometimes
applied to each
segment.)

34

Power Spectra obtained from a waveform consisting of a 100-Hz sine wave
buried in white noise (SNR = -16 db) with (right side) and without (left side)
averaging.

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

Frequency (Hz)

|X
av

g
[n

]|

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

Frequency (Hz)

|X
av

g
[n

]|

In the un-
averaged
spectrum,
a spike at
100 Hz is
clearly
seen.

For the averaged
spectrum, the
100-Hz
component is not
so obvious and
could easily be
missed, but the
averaging
technique
produces a
smoother
estimate of the
white noise.

Spectral Averaging (cont)

35

Signal Bandwidth
•The frequency or spectral representation of a signal
brings with it additional concepts relating a signal’s
spectrum, one of the most important of which is signal
bandwidth.

•The bandwidth of a signal is defined by the range of
frequencies found in the signal.

•Defining this range requires establishing a somewhat
artificial threshold for when a frequency is considered
present in a signal.

•A frequency is considered within the bandwidth of the
signal if its rms value is greater than the average
maximum rms value minus 3 db.

•The concept of bandwidth extends to processes as well
as signals.

36

7

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

1.2

Frequency (Hz)
10

0
10

2
10

4
0

0.2

0.4

0.6

0.8

1

1.2

Frequency (Hz)

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

1.2

Frequency (Hz)
10

0
10

2
10

4
0

0.2

0.4

0.6

0.8

1

1.2

Frequency (Hz)

Passband

Stopband
Stopband

Stopband Stopband Stopband

Passband

Passband

fc fc

fc

Passband

fl fh

Signal Bandwidth (continued)

BW = fc
(obvious)

BW = fc
based on
-3 db point

(.707 in
rms)

BW=fh-fl
where fh
and fl are
two 3 db
points

BW = fc

Based on
.707 point
Slope is
steeper,
but BW
same

37

Signal Bandwidth (continued)

• The – 3db, or “3 db down,” threshold is not entirely
arbitrary.
– When the signal is attenuated 3 db its rms amplitude is 0.707 of

its unattenuated value and it has half the power of its
unattenuated power.

• This boundary point is also known as the “half-power
point.”
– The terms “cutoff frequency,” “3 db point,” and “half-power point”

are synonymous.
• The signal may have a sharp or gradual decline in

energy (referred to as the frequency “rolloff”), but its
bandwidth is still given by the -3 db point.

• When a signal “rolls off” at both the low-frequency and
high-frequency ends, it has two cutoff frequencies.
– In this case the bandwidth is defined as the range between the

two cutoff frequencies: BW = fh - fl Hz.

38

Frequency Methods
MATLAB Implementation

• The basic Fourier Transform routine is implemented as:

• Xf = fft(x,n) % Calculate the Fourier Transform

where x is the input waveform and Xf is a complex vector
providing the sinusoidal coefficients.

The argument n is optional and is used to modify the length of
data analyzed:
if n is less than the length of x, then the analysis is
performed over the first n points.
If n is greater than the length of x, then the signal is padded
with trailing zeros to equal n.

• The fft routine uses the “Fast Fourier Transform” algorithm
that requires the data length to be a power of two: other
data lengths will require longer calculation times. 39

MATLAB Implementation (continued)

• The magnitude of the frequency spectra can be easily obtained by
applying the absolute value function, ‘abs’, to the complex output Xf:

Magnitude = abs(Xf); % Take the magnitude of Xf

This MATLAB function simply takes the square root of the sum of the
real part of Xf squared and the imaginary part of Xf squared.

The phase angle of the spectra can be obtained by application of the
MATLAB angle function:

Phase = angle(Xf) % Find the angle of Xf

The angle function takes the arctangent of the imaginary part divided
by the real part of Xf.
The angle routine takes note of the signs of the real and imaginary
parts, and generates an output in the proper quadrant.

40

Example 3-6 Construct the waveform used in Example 3-1 and
determine the Fourier Transform using both the MATLAB fft routine and a
direct implementation of the defining equations (Eqs. 3-8).
Solution: The MATLAB fft routine does no scaling so its output should be
multiplied by 2/N, where N is the number of points to get the correct
coefficients in rms value. To get the peak-to-peak values, the output will
have to be further scaled by dividing by 0.707.

N = 256; % Data length
t = (1:N)/N; % Generate time vector 1 sec long
fs = N; % Assumed sample frequency for 1 sec data
f = (1:N)*fs/(N); % Generate frequency vector for plotting
x = t; % Generate time vector
x(129:N) = 0; % Generate data signal
%
%
Xf = fft(x); % Take Fourier Transform, scale
Mag = abs(Xf(2:end))/(N/2); % and remove first point (DC value)
Phase = -angle(Xf(2:end))*(360/(2*pi));
%
plot(f(1:20),Mag(1:20),'xb'); hold on; % Plot magnitude lower frequencies)

xlabel('Frequency (Hz)'); ylabel('|X(f)|'); 41

Example 3-6 (continued)

Now calculate the Fourier Transform using a direct implementation
of the defining equations.

% Calculate Fourier Transform using basic equations (Eqs. 3-8)
for n = 1:20

a(n) = (2/N)*sum(x.*(cos(2*pi*n*t)));
b(n) = (2/N)*sum(x.*(sin(2*pi*n*t)));
C(n) = sqrt(a(n).^2 + b(n).^2); % Calculate magnitude and phase
theta(n) = (360/(2*pi)) * atan(b(n)./a(n));

end
plot(f(1:20),C(1:20),'sr'); % Plot superimposed
%
% Output numerical values
disp([a(1:4)' b(1:4)' C(1:4)' Mag(1:4)' theta(1:4)' Phase(1:4)'])

42

8

Example 3-6 ~ Results

The Magnitude spectrum produced by the two methods are identical as
seen by the perfect overlap of the x points and square points.

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Frequency (Hz)

|X
(f)

|

Here the
magnitude
is plotted
in linear
units, not
in db.
Both linear
units and
db are
used in
spectral
plots.

43

Example 3-6 ~ Results (continued)

The numerical values produced by this program are given below.

an bn Cn Mag(fft) Theta Phase (fft)

-0.1033 0.1591 0.1897 0.1897 -57.0182 121.5756
0.0020 -0.0796 0.0796 0.0796 -88.5938 -91.4063
-0.0132 0.0530 0.0546 0.0546 -76.0053 99.7760
0.0020 -0.0398 0.0398 0.0398 -87.1875 -92.8125

•Both methods produce identical magnitude spectra;
•however, the angles calculated using direct implementation are incorrect
because the MATLAB ‘atan’ function does not determine the correct
quadrant.

• Both magnitudes and the phase found by the fft routine match fairly closely
the values determined analytically in Example 3-1.

•Note that the values for a2 and a4 are not exactly zero due to computational
errors. (An example where hand calculation is more accurate than the
computer.)

44

Example 3-7 Construct a waveform consisting of a single sine wave
and white noise with an SNR of -14 db. Calculate the Fourier
Transform of this waveform and plot the magnitude spectrum.

Solution: Use sig_noise to generate the waveform, take the Fourier
Transform using fft, obtain the magnitude using abs, and plot.

The routine ‘sig_noise’ generates data consisting of sinusoids and
noise, and can be useful in evaluating spectral analysis algorithms.
The calling structure for sig_noise is:

[x,t] = sig_noise([f],[SNR],N); % Generate a signal in noise

where f specifies the frequency of the sinusoid(s) in Hz, SNR
specifies the desired noise associated with the sinusoid(s) in db, and
N is the number of points.
If f is a vector, than a number of sinusoids are generated, each with
a Signal-to-Noise ratio specified by SNR assuming it is a vector.
If SNR is a scalor, its value is used for the SNR of all the frequencies
generated.

45

Example 3-7 (continued)

clear all; close all;
fs = 1000; % The sample frequency of data is 1 kHz.
N = 1024; % Number of data points
% Generate data using ‘sig_noise’
% 250 Hz sin plus white noise; N data points; SNR = -14 db
[x,t] = sig_noise (250,-14,N);
%
Xf = fft(x); % Calculate FFT
PS = abs(Xf); % Calculate PS as magnitude squared
f = (1:N)*fs/N; % Frequency vector for plotting
plot(f,PS,'k'); % Plot the magnitude spectrum

title('Spectrum (symmetric about fs/2)');
xlabel('Frequency (Hz)'); ylabel('Magnitude');

This program produces a frequency vector the same length as the
data (N points) to aid in plotting. The frequency vector is based on
Eq. 3-29 and increases linearly from1.0 to fs.

46

Example 3-7 ~ Results

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140
Complete Spectrum (symmetric about fs/2)

Frequency (Hz)

M
ag

ni
tu

de

The spectrum is
(as expected)
symmetrical
around fs/2 (i.e.,
500 Hz.)
Normally these
points would not
be plotted.

The sinusoid at
250 Hz is clearly
visible.

47

Example 3-8 Determine and plot the frequency characteristics of heart
rate variability during both normal and meditative states.

Solution. The frequency characteristics may be found by direct
application of the Fourier Transform.
However, the heart rate data must first be converted to a time format.
The data set was obtained by a download from the PhysioNet data
base and provides the heart rate at unevenly spaced times, where the
sample times are provided as a second vector.
The heart rate data need to be rearranged into even time positions.
This will be done through interpolation using MATLAB’s ‘interp1’
routine.

Often getting the data into a suitable format is the hardest part of the
problem.

48

9

Example 3-8 (continued)
%
fs = 1.0; % Sample interval
load Hr_pre; % Load normal and meditative data
%
% Convert to evenly spaced time data using interpolation
% First generate and evenly space time vectors having one second
% intervals and extending over the time range of the data
%
xi = (ceil(t_pre(1)):fs:floor(t_pre(end))); % Time vector
yi = interp1(t_pre,hr_pre,xi'); % Interpolate
yi = yi - mean(yi); % Remove average
f = (1:length(yi))*fs/length(yi); % Vector for plotting
%
% Now determine Power spectrum (take square of magnitude)
YI = abs((fft(yi)).^2);
subplot(1,2,1);

plot(f,YI,'k'); % Plot spectrum
xlabel('Frequency (Hz)'); ylabel('Power Spectrum');
axis([0 .15 0 max(YI)*1.25]);

%
……. Repeat for meditative data …….

49

Example 3-8 Analysis

Analysis:

To convert the heart rate data to a sequence of evenly spaced points in
time, a time vector, xi, is first created that increases in increments of
1.0 second between the lowest and highest values of time in the
original data.

A 1.0-second increment was chosen since this was approximately the
average time spacing of the regional data.

Evenly spaced time data, yi, were generated using the MATLAB
interpolation routine interp1.

This routine takes the old x and y points and the desired new x points
as inputs and produces an interpolated output with the desired x point
spacing.

Since the spectrum of heart rate variability is desired, the average
heart rate is subtracted before evaluating the Power Spectrum.

50

Example 3-8 Results

0 0.05 0.1 0.15
0

0.5

1

1.5

2

2.5

x 10
6

Frequency (Hz)

P
o

w
e

r
S

p
e

ct
ru

m

Normal
Meditative

51

Example 3-9 Determine and plot the frequency characteristics of
heart rate variability during both normal and meditative states using
averaging.

Solution:
Write a general program called welch to generate an average Power
Spectrum given the data, segment size, and the number of
overlapping points in adjacent segments.
This routine should also take in, as an optional parameter, the
sampling frequency to be used in generating a frequency vector.
Output the power spectrum and the frequency vector.
Output only the non-redundant points; i.e., up to fs/2.

…… data loading and reorganizing as in Example 3-8
%
segment_length = fix(length(yi)/8); % Average 8 segments
[PS_avg,f] = welch(yi,segment_length,segment_length-1,fs);
subplot(1,2,1)

plot(f,PS_avg,'k'); % Plot averaged PS
xlabel('Frequency (Hz)'); ylabel('Power Spectrum');
axis([0 .2 0 max(PS_avg)*1.2]); % Limit horizontal axis
……. Repeat for meditative data …….

52

function [PS,f] = welch(x,nfft,noverlap,fs);
%Function to calculate averaged spectrum
% Output arguments
% sp spectrogram
% f frequency vector for plotting
% Input arguments
% x data
% nfft window size
% noverlap number of overlaping points in adjacent segments
% fs sample frequency
[N xcol] = size(x); %
Make row vector
if N < xcol

x = x';
N = xcol;

end
half_segment = fix(nfft/2); % Half segment length
if isempty(noverlap) == 1

noverlap = half_segment; % Set default overlap at 50%
end
increment = nfft - noverlap;
nu_avgs = fix((N-nfft)/increment) % Determine the number of segments

53

if isempty(fs) == 0
f = (1:half_segment)* fs/nfft; % Calculate frequency vector

else
f = (1:half_segment)* pi/nfft; % Default frequency vector

end
%
for i = 1:nu_avgs % Calculate spectra each segment

first_point = 1 + (i-1) * increment; % Set up to isolate appropriate
data = x(first_point:first_point+nfft-1); % data segment

if i == 1
PS = abs((fft(data)).^2)/(nfft*nu_avgs); % Calculate first PS

else
PS = PS + abs((fft(data)).^2)/(nfft*nu_avgs); % Calculate PS avg

end
end
PS = PS(1:half_segment); % Remove redundant points

Function ‘welch’ (continued)

54

10

Analysis:

The routine ‘welch’ illustrates a number of MATLAB tricks.

• The initial section tests the dimensions of the input to determine if it is
arranged as a row or column vector. If it is a column vector, the number
of rows, N, will be less than the number of columns, xcol, and the
vector is transposed insuring that x in now a row vector.

• The program checks if a desired overlap is specified (i.e, noverlap is
not an empty variable) and, if not, sets the overlap to a default value of
50% (i.e., half the segment length, nfft).

•A frequency vector, f, is generated from 1 to π if fs is unspecified, or
from 1 to fs if it is given.

• The number of segments to be averaged is determined based on the
segment size (nfft) and the overlap (noverlap).

• A loop is used to take the Fourier Transform of each segment,
calculate the Power Spectrum, and sum the individual spectra.

•Finally the averaged Power Spectrum is shortened to eliminate
redundant points. 55

Example 3-9 Results :

The results show much smoother spectra than those taken without
averaging, but they also lose some of the detail.

0 0.05 0.1 0.15 0.2
0

50

100

150

200

250

300

Frequency (Hz)

P
ow

er
 S

pe
ct

ru
m

0 0.05 0.1 0.15 0.2
0

200

400

600

800

1000

1200

Frequency (Hz)

P
ow

er
 S

pe
ct

ru
m

A B

56

The spectra can also be plotted in db simply by taking 20log(PS_avg):

0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

Frequency (Hz)

P
o
w

er
 S

p
ec

tr
um

0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

60

70

Frequency (Hz)

P
o
w

er
 S

p
ec

tr
um

A B

The 1/f slope is one indication of a chaotic processes.

57

Example 3-10 Evaluate the influence of Power Spectral averaging on
a combination of broadband and narrowband processes with added
noise. The data may be found in file broadband1.mat.

load broadband1; % Load data (variable x)
fs = 1000; % Sampling frequency
%
PS = abs((fft(x)).^2)/length(x); % Calculate un-averaged PS
half_length = fix(length(PS)/2); % Find data length /2
f = (1:half_length)* fs/(2*half_length); % Frequency vector for plotting
subplot(1,2,1)
plot(f,PS(1:half_length),'k'); % Plot un-averaged Power Spectrum

xlabel('Frequency (Hz)'); ylabel('Power Spectrum');
title('Standard Spectrum');

%
segment_length = fix(length(x)/80); % Average 80 segments, 99% o’lap
[PS_avg,f] = welch(x,segment_length,segment_length-1,1000);
subplot(1,2,2)

plot(f,PS_avg,'k'); % Plot averaged Power Spectrum
xlabel('Frequency (Hz)'); yla

58

Example 3-10 ~ Results

The averaged spectrum better represents the broadband noise
(which should be a flat line), but loses the two narrowband sinusoids
at 390 and 410 Hz.

0 100 200 300 400 500
0

1

2

3

4

5

6

Frequency (Hz)

P
ow

er
 S

pe
ct
ru

m

A. Standard Spectrum

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency (Hz)

P
ow

er
 S

pe
ct
ru

m

B. Averaged Spectrum

59

