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Biosignals and Systems Frequency Transformations
Probing a Signal

• Complex signals such as the EEG signal shown previously 
could be analyzed by probing with reference signals

• Crosscorrelation provides a mechanism for finding out if 
sinusoids are embedded in a complicated signal.  

• For example, we could crosscorrelate the EEG signal with 
sinusoids having frequencies we think may be embedded in the 
signal.  

• If the crosscorrelation function shows a high value at some 
time shift (τ), that would suggest the presence of our sinusoid, or 
other reference signal, at that time shift (or, equivalently, at that 
phase shift). 
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Crosscorrelation with Sinusoids
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The lower curve shows 
the maximum 
crosscorrelation between 
sinewaves at different 
frequencies and the EEG 
signal shown in the upper 
plot.  

The upper plot also shows 
one of the sinewaves used 
and the middle plot shows 
the crosscorrelation 
obtained for this particular 
sinewave.

(For this sinewave, the 
maximum correlation occurs 
close to zero lag.)
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•Using crosscorrelation to probe the contents of a signal works well if 
we know what we are looking for.  

•In the previous example, twenty five sinusoids were used to probe the 
EEG signal using crosscorrelation, but we still may have missed some 
important frequencies.

•If we are probing with sinusoids, and the signal we are probing is 
periodic, (or can be taken as periodic), the answer to the question of 
which frequencies to use is found in the Fourier Series Theorem.  

•The Fourier Series Theorem states that any periodic signal, no matter 
how complicated, can be represented by a unique sum of sinusoids; 
specifically, a series of sinusoids that are the same, or multiples of the 
signal frequency. 

Probing with Sinusoids
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The Fourier Series Theorem
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To put the Fourier series theorem in mathematical terms, note that 
if the period of a periodic function xT(t) is T, then the base or 
“fundamental frequency” is:

and the base cosine wave would be:
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and the series of harmonically related cosine waves 
becomes:
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The Fourier Series Theorem (continued)
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The Fourier Series Theorem states that a periodic signal only 
consists of a series of harmonically related sinusoids:

The Fourier Series Theorem simply states that any periodic 
function, x(t), can be completely and equivalently represented 
by a summation of this series:

where xT(t) is a periodic function of period T, and the first term, C0 (the 
DC term) , accounts for any non-zero average value of the signal.  6
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The Fourier Series Theorem (continued)
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The Fourier sinusoidal series can also be represented in terms of a 
sine and cosine series. Substituting in the sine/cosine representation:
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To find the coefficients an and bn simply correlate x(t) with the 
cosine and sine waves at the various frequencies, 2πnf1.  
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The Fourier Series Theorem (continued)
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An alternate method could be used based on correlation with a 
single sinusoid.

However, for each harmonic (i.e., each value of n), we would need to 
find the specific phase shift θ that maximizes the cross correlation 
rxy(θ).   

(Set the derivative, drxy(θ)/dθ, to zero, solve for θ, then find the 
crosscorrelation at that value of θ. ) 

This is not too difficult to do using a computer program such as 
MATLAB, and the approach was used to find the sinusoidal 
components in the first figure, but it is not as easy as the simple 
correlation method particularly for hand calculations.
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The Fourier Series Theorem (continued)
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where:     and        

The single sinusoid representation (cos(2πft + θ) ) is 
usually a more useful representation of the Fourier 
series, but the coefficients are still often determined 
using correlation with pure sine and cosines.  

From the cosine and sine coefficients (an and bn) the 
magnitude and phase of the single sinusoid 
representation can be determined using the 
conversions below.

9

Bilateral Transformation

• Since xT(t) can be equivalently represented by the 
Fourier series, the series of sine and cosine 
coefficients, an and bn, or the equivalent single 
sinusoid, Cn and θn, these coefficients are as good a 
representation of xT(t) as xT(t) itself.  

• For this reason, representing a signal by its Fourier 
series is known as a “bilateral transformation. 
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Frequency Representation
• The transformation based on sinusoids is especially 

useful because of the unique frequency characteristics of 
a sinusoid.

• A sinusoid contains energy at only one frequency.

• Thus, the sinusoidal components of a signal are also the 
frequency components of a signal; that is, the spectral  
characteristics of the signal or just “spectrum.” 

• A complete description of a waveform’s frequency 
characteristics consists of two plots: 
– a plot of the components’ magnitude verses frequency 
– a plot of the components’ phase verses frequency. 
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Frequency Spectrum
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Each sinusoidal 
component gives 
us a single point 
on the two 
frequency curves 
(magnitude and 
phase) at a 
frequency given 
to the component 
number n; 
specifically:
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Correlation with a 10 Hz sinusoid gives the magnitude 
and phase characteristics of x(t) at 10 Hz. 12
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Symmetry

Table 3-1 Function Symmetries

Function
Name

Symmetry Coefficient Values

Even x(t) = x(-t) bnn = 0

Odd x(t) = -x(-t) ann = 0

Half-wave x(t) = x(T - t) ann = bnn = 0;   for n even

Some waveforms are symmetrical or anti-
symmetrical about t = 0, so that one or the other of 
the components, an or bn will be zero. 
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Symmetries (continued)
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C) Half-Wave: x(t) = x(T-t)
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Example 3-2 Find the Fourier Transform of the triangle waveform defined 
below.  Find the first four Fourier Transform components.
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Solution.  Find the cosine (an) and sine (bn) coefficients.  Then 
convert to magnitude (Cn) and phase (θn) if desired.  

To find bn
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Example 3-2 (Continued)

To find the first term a0.
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To find the rest of the an terms:
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These two coefficient terms can then be combined 
into the single sinusoidal representation as magnitude 
(Cn) and phases (θn) using the equations given 
previously.  

Care must be taken in computing the angle to insure 
that it represents the proper quadrant:

Example 3-2 (Continued)
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Example 3-1 (Continued)

A plot of the magnitude coefficients of the first four terms shows  a 
frequency spectrum where the magnitude decreases with 
increasing frequency. 

Frequency Spectrum

18
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Fourier Series 
Complex Representation
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Euler’s identity allows us to describe the sine and cosine 
functions in terms of imaginary exponentials 

Using the complex representation of a sinusoid, the Fourier 
Transformation correlation equations can be written as a single 
equation:

where:      C
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n
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2
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Fourier Transform 
Complex Representation
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The magnitude and the phase components can be obtained 
from the complex an and bn:

So the magnitude of Cn is equal to 0.707 times the magnitude of 
the sinusoidal components and the angle of Cn is equal to the 
phase of the sinusoidal component.  

Hence the complex variable Cn contains both sine and cosine 
coefficients, and the individual components are easily 
determined from the complex representation.
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Complex Fourier Series
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The Fourier series equation is also know as the inverse Fourier 
Transform.  

In complex form it requires the summation to be done for n = ± ∞:

Although they are succinct, the complex form of the Fourier 
Transform and Inverse Fourier Transform may not be as useful for 
hand calculations.

However, the complex form is used by MATLAB and most other 
computer Fourier Transform routines. 
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The Sampling Theorem

•Time-slicing, better known as “sampling,” has a 
peculiar effect on the sampled signal’s spectrum: 

it generates a mirror image of the spectrum about a 
frequency that is half of that used to sample the 
signal.

•If the sampling frequency is fs, then the spectrum 
above fs/2 will be the mirror image of that below fs/2. 

The frequency fs/2 is sometimes referred to as the 
“Nyquist frequency.” 

•The generation of additional frequencies not in the 
original signal is termed “aliasing.”
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Aliasing
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Left spectrum: If there are no frequencies in the original data above fs/2, 
then the frequencies created by sampling are separate from the original.  

Right spectrum: If frequencies exist in the original signal greater than fs/2, 
then the new frequencies become intermixed with the original frequencies 
and it is not possible to figure out which is which.  The original signal is 
corrupted. 23

Aliasing (continued)

• Since the Fourier Transform is bilateral, if you cannot determine the 
original spectrum from the one in the computer in this confused 
condition, you cannot determine the original signal from the signal 
stored in the computer.  

– The frequencies above the Nyquist frequency have hopelessly corrupted the 
signal stored in the computer.  

• Fortunately, the converse is also true.  If there are no corrupting 
frequencies in the original signal (i.e., the signal contains no 
frequencies above twice the sampling frequency), the spectrum in 
the computer will be a true reflection of the signal’s spectrum if we 
eliminate the extra frequencies by filtering.

• This leads to the famous “Sampling Theorem” of Shannon: 
– the original signal can be recovered from a sampled signal provided the sampling 

frequency is twice the maximum frequency contained in the original:

fs > fmax/2

24
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Data Truncation

• A digitized waveform must necessarily be truncated to 
the length of the memory storage array, a process 
described as “windowing.” 

• The windowing process can be thought of as multiplying 
the data by some window shape.  

• If the waveform is simply truncated and no further 
shaping is performed on the resultant windowed 
waveform (as is often the case), 
– then the window shape is rectangular.  

• The data length will largely determine spectral resolution

26

Spectral Resolution
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The frequencies obtained by the Fourier Transform depend on the 
period: 

where N is the total number of points in the data vector. 

Since the spacing between frequencies on the spectral curve is 
proportional to 1/T, a longer effective T will lead to a spectrum 
with more closely spaced points, a spectrum with higher 
frequency resolution

The frequency, f, can also be written as:

This equation is often used in the MATLAB routines in the 
generation of the horizontal axis of a frequency plot. 
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Truncation and Zero Padding
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EEG data at it 
original length.

Truncated or 
shortened EEG 
data.

EEG data 
lengthened using 
“zero padding:” 
adding zeros to the 
end of the original 
data
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Zero Padding (continued)

0 0.2 0.4 0.6 0.8
0

0.5

1

Time Domain

0 1 2 3 4 5
0

10

20

30

Frequency Domain

0 0.5 1 1.5
0

0.5

1

0 1 2 3 4 5
0

10

20

30

0 2 4 6
0

0.5

1

Time (sec)
0 1 2 3 4 5

0

10

20

30

Frequency (Hx)

Adding zeros to 
the end of the 
original data make 
the effective 
period, T, longer 
increasing the 
apparent 
resolution of the 
spectrum.  

While no new 
information is 
gained, it does 
perform an 
interpolation of the 
spectrum. 
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Power Spectrum

• The Power Spectrum is commonly defined as the Fourier 
Transform of the autocorrelation function.  

• In continuous and discrete notation, the Power Spectrum 
equation becomes:
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Power Spectrum (continued)

• In the direct approach, the Power Spectrum is 
calculated as the magnitude squared of the Fourier 
Transform of the waveform of interest:

PS(f) = |X(f)|2

• The Power Spectrum does not contain phase 
information 
– so the Power Spectrum is not a bilateral transformation 

• it is not possible to reconstruct the signal from the Power Spectrum.  

• Since the Power Spectrum does not contain phase 
information, it is applied in situations where phase is 
not considered useful.
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Spectral Averaging
• Just as time signals can be averaged, Power Spectra 

can be averaged. 

• Even if only one signal is available, isolated segments of 
the data can be used.

• The Power Spectra determined from each segment is 
averaged to produce a spectrum that better represents 
the broad, or “global,” features of the spectrum.

• This approach is popular when the available waveform is 
only a sample of a longer signal and spectral analysis 
can only estimate the real spectrum. 

• When the Power Spectrum is based on a direct 
application of the Fourier Transform followed by 
averaging, it is commonly referred to as an average 
“periodogram.” 32

Spectral Averaging (continued)
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Power spectra obtained from 
a waveform consisting of a 
100-Hz sine wave and white 
noise with (right side) and 
without (left side) averaging.  

In the un-averaged 
spectrum, a spike at 100 Hz 
is clearly seen. 

For the averaged spectrum, 
the 100-Hz component is no 
longer visible;  

however, the averaging 
technique produces a better 
estimate of the white noise 
spectrum which should be a 
flat horizontal line.
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Spectral Averaging (continued)

• One of the 
most popular 
procedures to 
evaluate the 
average 
periodogram 
is attributed to 
Welch which 
uses 
overlapping 
segments.  (A 
shaping window 
is sometimes 
applied to each 
segment.)
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Power Spectra obtained from a waveform consisting of a 100-Hz sine wave 
buried in white noise (SNR = -16 db) with (right side) and without (left side) 
averaging. 
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In the un-
averaged 
spectrum, 
a spike at 
100 Hz is 
clearly 
seen.

For the averaged 
spectrum, the 
100-Hz 
component is not 
so obvious and 
could easily be 
missed, but the 
averaging 
technique 
produces a 
smoother 
estimate of the 
white noise.

Spectral Averaging (cont)
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Signal Bandwidth
•The frequency or spectral representation of a signal 
brings with it additional concepts relating a signal’s 
spectrum, one of the most important of which is signal 
bandwidth. 

•The bandwidth of a signal is defined by the range of 
frequencies found in the signal. 

•Defining this range requires establishing a somewhat 
artificial threshold for when a frequency is considered 
present in a signal. 

•A frequency is considered within the bandwidth of the 
signal if its rms value is greater than the average 
maximum rms value minus 3 db.  

•The concept of bandwidth extends to processes as well 
as signals. 

36
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(obvious)
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-3 db point
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Signal Bandwidth (continued)

• The – 3db, or “3 db down,” threshold is not entirely 
arbitrary.  
– When the signal is attenuated 3 db its rms amplitude is 0.707 of 

its unattenuated value and it has half the power of its 
unattenuated power.  

• This boundary point is also known as the “half-power 
point.”  
– The terms “cutoff frequency,” “3 db point,” and “half-power point” 

are synonymous.
• The signal may have a sharp or gradual decline in 

energy (referred to as the frequency “rolloff”), but its 
bandwidth is still given by the -3 db point.   

• When a signal “rolls off” at both the low-frequency and 
high-frequency ends, it has two cutoff frequencies.
– In this case the bandwidth is defined as the range between the 

two cutoff frequencies:  BW = fh - fl Hz.
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Frequency Methods 
MATLAB Implementation

• The basic Fourier Transform routine is implemented as: 

• Xf = fft(x,n) % Calculate the Fourier Transform 

where x is the input waveform and Xf is a complex vector 
providing the sinusoidal coefficients. 

The argument n is optional and is used to modify the length of 
data analyzed: 
if n is less than the length of x, then the analysis is 
performed over the first n points.  
If n is greater than the length of x, then the signal is padded 
with trailing zeros to equal n. 

• The fft routine uses the “Fast Fourier Transform” algorithm 
that requires the data length to be a power of two: other 
data lengths will require longer calculation times. 39

MATLAB Implementation (continued)

• The magnitude of the frequency spectra can be easily obtained by 
applying the absolute value function, ‘abs’, to the complex output Xf: 

Magnitude = abs(Xf); % Take the magnitude of Xf 

This MATLAB function simply takes the square root of the sum of the 
real part of Xf squared and the imaginary part of Xf squared.  

The phase angle of the spectra can be obtained by application of the 
MATLAB angle function:

Phase = angle(Xf) % Find the angle of Xf 

The angle function takes the arctangent of the imaginary part divided 
by the real part of Xf.  
The angle routine takes note of the signs of the real and imaginary 
parts, and generates an output in the proper quadrant. 
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Example 3-6 Construct the waveform used in Example 3-1 and 
determine the Fourier Transform using both the MATLAB fft routine and a 
direct implementation of the defining equations (Eqs. 3-8).
Solution: The MATLAB fft routine does no scaling so its output should be 
multiplied by 2/N, where N is the number of points to get the correct 
coefficients in rms value.  To get the peak-to-peak values, the output will 
have to be further scaled by dividing by 0.707. 

N = 256;                    % Data length
t = (1:N)/N;                % Generate time vector 1 sec long 
fs = N;                     % Assumed sample frequency for 1 sec data
f = (1:N)*fs/(N);           % Generate frequency vector for plotting
x = t;                      % Generate time vector
x(129:N) = 0;              % Generate data signal
%
%
Xf = fft(x);                 % Take Fourier Transform, scale
Mag = abs(Xf(2:end))/(N/2);  %   and remove first point (DC value)
Phase = -angle(Xf(2:end))*(360/(2*pi));
%
plot(f(1:20),Mag(1:20),'xb'); hold on;   % Plot magnitude lower frequencies)

xlabel('Frequency (Hz)'); ylabel('|X(f)|'); 41

Example 3-6 (continued)

Now calculate the Fourier Transform using a direct implementation 
of the defining equations.  

% Calculate Fourier Transform using basic equations (Eqs. 3-8)
for n = 1:20

a(n) = (2/N)*sum(x.*(cos(2*pi*n*t)));
b(n) = (2/N)*sum(x.*(sin(2*pi*n*t)));
C(n) = sqrt(a(n).^2 + b(n).^2); % Calculate magnitude and phase
theta(n) = (360/(2*pi)) * atan(b(n)./a(n));

end
plot(f(1:20),C(1:20),'sr');             % Plot superimposed 
%
% Output numerical values
disp([a(1:4)' b(1:4)' C(1:4)' Mag(1:4)' theta(1:4)' Phase(1:4)'])

42
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Example 3-6  ~ Results

The Magnitude spectrum produced by the two methods are identical as 
seen by the perfect overlap of the x points and square points. 
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Here the 
magnitude 
is plotted 
in linear 
units, not 
in db.  
Both linear 
units and 
db are 
used in 
spectral 
plots.  

43

Example 3-6 ~ Results (continued)

The numerical values produced by this program are given below. 

an bn Cn Mag(fft)   Theta    Phase (fft)

-0.1033    0.1591    0.1897    0.1897  -57.0182  121.5756
0.0020   -0.0796    0.0796    0.0796  -88.5938  -91.4063
-0.0132    0.0530    0.0546    0.0546  -76.0053   99.7760
0.0020   -0.0398    0.0398    0.0398  -87.1875  -92.8125

•Both methods produce identical magnitude spectra;  
•however, the angles calculated using direct implementation are incorrect 
because the MATLAB ‘atan’ function does not determine the correct 
quadrant. 

• Both magnitudes and the phase found by the fft routine match fairly closely 
the values determined analytically in Example 3-1.  

•Note that the values for a2 and a4 are not exactly zero due to computational 
errors. (An example where hand calculation is more accurate than the 
computer.)
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Example 3-7 Construct a waveform consisting of a single sine wave 
and white noise with an SNR of -14 db.  Calculate the Fourier 
Transform of this waveform and plot the magnitude spectrum. 

Solution: Use sig_noise to generate the waveform, take the Fourier 
Transform using fft, obtain the magnitude using abs, and plot.

The routine ‘sig_noise’ generates data consisting of sinusoids and 
noise, and can be useful in evaluating spectral analysis algorithms.  
The calling structure for sig_noise is:

[x,t] = sig_noise([f],[SNR],N);     % Generate a signal in noise

where f specifies the frequency of the sinusoid(s) in Hz, SNR 
specifies the desired noise associated with the sinusoid(s) in db, and 
N is the number of points.  
If f is a vector, than a number of sinusoids are generated, each with 
a Signal-to-Noise ratio specified by SNR assuming it is a vector.  
If SNR is a scalor, its value is used for the SNR of all the frequencies 
generated. 

45

Example 3-7 (continued)

clear all; close all; 
fs = 1000; % The sample frequency of data is 1 kHz.
N = 1024; % Number of data points 
% Generate data using ‘sig_noise’ 
%        250 Hz sin plus white noise; N data points; SNR = -14 db 
[x,t] = sig_noise (250,-14,N);
% 
Xf = fft(x); % Calculate FFT
PS = abs(Xf); % Calculate PS as magnitude squared
f = (1:N)*fs/N; % Frequency vector for plotting
plot(f,PS,'k'); % Plot the magnitude spectrum

title('Spectrum (symmetric about fs/2)');
xlabel('Frequency (Hz)');  ylabel('Magnitude');

This program produces a frequency vector the same length as the 
data (N points) to aid in plotting.  The frequency vector is based on 
Eq. 3-29 and increases linearly from1.0 to fs.

46

Example 3-7 ~ Results
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The spectrum is 
(as expected) 
symmetrical 
around fs/2 (i.e., 
500 Hz.) 
Normally these 
points would not 
be plotted.

The sinusoid at 
250 Hz is clearly 
visible.  
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Example 3-8 Determine and plot the frequency characteristics of heart 
rate variability during both normal and meditative states.

Solution. The frequency characteristics may be found by direct 
application of the Fourier Transform.  
However, the heart rate data must first be converted to a time format.  
The data set was obtained by a download from the PhysioNet data 
base and provides the heart rate at unevenly spaced times, where the 
sample times are provided as a second vector.  
The heart rate data need to be rearranged into even time positions.  
This will be done through interpolation using MATLAB’s ‘interp1’ 
routine.   

Often getting the data into a suitable format is the hardest part of the 
problem. 

48
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Example 3-8 (continued)
%
fs = 1.0;             % Sample interval
load Hr_pre;       % Load normal and meditative data
%
% Convert to evenly spaced time data using interpolation
% First generate and evenly space time vectors having one second
%   intervals and extending over the time range of the data
%
xi = (ceil(t_pre(1)):fs:floor(t_pre(end)));   % Time vector
yi = interp1(t_pre,hr_pre,xi');          % Interpolate
yi = yi - mean(yi);                      % Remove average
f = (1:length(yi))*fs/length(yi);        % Vector for plotting
%
% Now determine Power spectrum (take square of magnitude)
YI = abs((fft(yi)).^2);
subplot(1,2,1);

plot(f,YI,'k'); % Plot spectrum
xlabel('Frequency (Hz)'); ylabel('Power Spectrum');
axis([0 .15 0 max(YI)*1.25]);

%
……. Repeat for meditative data …….

49

Example 3-8 Analysis

Analysis: 

To convert the heart rate data to a sequence of evenly spaced points in 
time, a time vector, xi, is first created that increases in increments of 
1.0 second between the lowest and highest values of time in the 
original data. 

A 1.0-second increment was chosen since this was approximately the 
average time spacing of the regional data.  

Evenly spaced time data, yi, were generated using the MATLAB 
interpolation routine interp1.  

This routine takes the old x and y points and the desired new x points 
as inputs and produces an interpolated output with the desired x point 
spacing.  

Since the spectrum of heart rate variability is desired, the average 
heart rate is subtracted before evaluating the Power Spectrum. 

50

Example 3-8 Results
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Example 3-9 Determine and plot the frequency characteristics of 
heart rate variability during both normal and meditative states using 
averaging.  

Solution:
Write a general program called welch to generate an average Power 
Spectrum given the data, segment size, and the number of 
overlapping points in adjacent segments.  
This routine should also take in, as an optional parameter, the 
sampling frequency to be used in generating a frequency vector.  
Output the power spectrum and the frequency vector.  
Output only the non-redundant points; i.e., up to fs/2. 

…… data loading and reorganizing as in Example 3-8
%
segment_length = fix(length(yi)/8);     % Average 8 segments 
[PS_avg,f] = welch(yi,segment_length,segment_length-1,fs); 
subplot(1,2,1)    

plot(f,PS_avg,'k');                     % Plot averaged PS
xlabel('Frequency (Hz)'); ylabel('Power Spectrum');
axis([0 .2 0 max(PS_avg)*1.2]); % Limit horizontal axis
…….  Repeat for meditative data …….

52

function [PS,f] = welch(x,nfft,noverlap,fs);
%Function to calculate averaged spectrum
%  Output arguments
% sp spectrogram
% f frequency vector for plotting
%  Input arguments
% x data
% nfft window size
%      noverlap number of overlaping points in adjacent segments
% fs sample frequency
[N xcol] = size(x);     % 
Make row vector 
if N < xcol

x = x';
N = xcol;

end  
half_segment = fix(nfft/2);      % Half segment length
if isempty(noverlap) == 1

noverlap = half_segment;              % Set default overlap at 50%
end
increment = nfft - noverlap; 
nu_avgs = fix((N-nfft)/increment)       % Determine the number of segments

53

if isempty(fs) == 0
f = (1:half_segment)* fs/nfft;  % Calculate frequency vector

else 
f = (1:half_segment)* pi/nfft;  % Default frequency vector

end
%
for i = 1:nu_avgs % Calculate spectra each segment

first_point = 1 + (i-1) * increment; % Set up to isolate appropriate 
data = x(first_point:first_point+nfft-1);       %     data segment

if i == 1
PS = abs((fft(data)).^2)/(nfft*nu_avgs);  % Calculate first PS 

else
PS = PS + abs((fft(data)).^2)/(nfft*nu_avgs);   % Calculate PS avg

end
end
PS = PS(1:half_segment);     % Remove redundant points  

Function ‘welch’ (continued)

54
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Analysis:

The routine ‘welch’ illustrates a number of MATLAB tricks. 

• The initial section tests the dimensions of the input to determine if it is 
arranged as a row or column vector.  If it is a column vector, the number 
of rows, N, will be less than the number of columns, xcol, and the 
vector is transposed insuring that x in now a row vector.  

• The program checks if a desired overlap is specified (i.e, noverlap is 
not an empty variable) and, if not, sets the overlap to a default value of 
50% (i.e., half the segment length, nfft).  

•A frequency vector, f, is generated from 1 to π if fs is unspecified, or 
from 1 to fs if it is given. 

• The number of segments to be averaged is determined based on the 
segment size (nfft) and the overlap (noverlap).  

• A loop is used to take the Fourier Transform of each segment, 
calculate the Power Spectrum, and sum the individual spectra. 

•Finally the averaged Power Spectrum is shortened to eliminate 
redundant points.  55

Example 3-9 Results :

The results show much smoother spectra than those taken without 
averaging, but they also lose some of the detail.
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The spectra can also be plotted in db simply by taking 20log(PS_avg):
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The 1/f slope is one indication of a chaotic processes.
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Example 3-10 Evaluate the influence of Power Spectral averaging on 
a combination of broadband and narrowband processes with added 
noise.  The data may be found in file broadband1.mat. 

load broadband1;                            % Load data (variable x)
fs = 1000;                                  % Sampling frequency
%
PS = abs((fft(x)).^2)/length(x);               % Calculate un-averaged PS
half_length = fix(length(PS)/2); % Find data length /2
f = (1:half_length)* fs/(2*half_length);    % Frequency vector for plotting
subplot(1,2,1)
plot(f,PS(1:half_length),'k');                  % Plot un-averaged Power Spectrum

xlabel('Frequency (Hz)'); ylabel('Power Spectrum');
title('Standard Spectrum');

%
segment_length = fix(length(x)/80);        % Average 80 segments, 99% o’lap
[PS_avg,f] = welch(x,segment_length,segment_length-1,1000); 
subplot(1,2,2)    

plot(f,PS_avg,'k');                     % Plot averaged Power Spectrum
xlabel('Frequency (Hz)'); yla
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Example 3-10 ~ Results  

The averaged spectrum better represents the broadband noise 
(which should be a flat line), but loses the two narrowband sinusoids 
at 390 and 410 Hz. 

0 100 200 300 400 500
0

1

2

3

4

5

6

Frequency (Hz)

P
ow

er
 S

pe
ct
ru

m

A. Standard Spectrum

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency (Hz)

P
ow

er
 S

pe
ct
ru

m

B.  Averaged Spectrum

59


