Biosignals and Systems

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr naydin@ieee.org http://www.yildiz.edu.tr/~naydin Physiological and anatomical background

Importance of human anatomy and physiology for BME

- BME is an interdisciplinary field based in both – engineering and
 - life sciences
- Important that biomedical engineers

 have knowledge about both areas
 - are able to communicate in both areas
- Basic components of the body must be understood and how they function to
 - understand l imitations of engineering with respect to human body
 - exchange ideas with medical professionals
 - develop new ideas

• Anatomy

- internal and external structures of the body and their physical relationships
- Physiology

 functions of those structures
- · Medical terminology

Anatomical positions

- superior inferior
- superior vena cava is in the chest, inferior vena cava is in the abdomen
 distal proximal
- upper arm is proximal to the elbow, lower arm is distal to the elbow
 medial lateral
- nose is medial to the eyes; ears are lateral to the eyes
- central peripheral
- central nervous system is located along the main axis of the body;
 peripheral nervous system is outside the central nervous system
- anterior (ventral) posterior (dorsal)
 - trachea is anterior to the esophagus, while esophagus is posterior to the trachea

Anatomical positions

- superficial deep
 - Superficial blood vessels are closer to the skin than those that lie deep in the abdominal cavity.
- afferent efferent
- la neuron is afferent leading to the spinal cord but motoneuron is efferent because it leads to the muscle
- descending ascending
- ascending and descending aorta
- internal external
- intra- and extra cellular space is divided by cell membrane
 dexter sinister
- heart is usually located on the left side of the thorax
- ipsilateral contralateral
 rm and leg can be ipsilateral (on the same side) but legs and

Thorax

- Pectoral = chest
- Mammary = breast
- Axillary = armpit
- Vertebral = backbone
- Costal = ribs

• Abdomen

- Celiac = abdomen
- Pelvic = lower portion of
- abdomen
 - Gluteal = buttock
 - Inguinal = groin
 - Groin = depressed region of abdomen near thigh
 - abdomen near ungn
 - Lumbar = lower back
 - Sacral = where vertebrae
 - terminate

Body organizations	
• Atom	
Molecule	
formed by a group of atomsCellular or Organelle	
- tiny membranous structures that perform cell functions Tissue	
 composed of similar types of cells and performs a specific function 	
 Organ composed of several types of tissues and performs a particular function 	
 Organ system group of related organs working together 	
Organism Aliving thing	
- a nying tining	1

Cellular organization

- Cells
- · smallest anatomical and physiological unit in the human body
- · composed of
 - organic compounds
 - · carbohydrates, lipids, proteins, nucleic acids work as energy packet, storehouses of energy and hereditary information, structural materials, metabolic workers

 - water (60 % of the weight)
 - most common elements: O, C, H, N, Ca, F, K, Na, Cl, Mg

Cells, compounds

• carbohydrates

- Function:
 - structural material,
 - transport,
 - energy storage
 - Types:
 - Monosaccharides (glugose)
 - Oligosaccharides (lactose, maltose)
 - Polysaccharides (glycogen)

• lipids

- Greasy or oily compounds that dissolve in each other but not in water
- Function:
 - structural materials in cells
 - · main reservoirs of stored energy

• proteins

- Most diverse form of biological molecules, built from a small number (20) of essential amino acids
- Enzymes (specialized proteins):
 - · Make metabolic reactions proceed at a faster rate
 - Enable cells to produce the organic compounds of life
- Structural elements in a body
 - · Act as transport channels across cell membranes
 - Function as signals for changing activities
 - · Provide chemical weapons against disease-carrying bacteria

Cellular organization

• Cells

- Cells are surrounded by plasma membrane that separates (not isolate) cell's interior from its environment

· Plasma membrane

- Gives mechanical strength
- Provides structure
- Helps with movement
- Controls the cell's volume
- Controls cell's activities by regulating the movement
 - of chemicals in and out of the cell

- Plasma membrane is composed of: - Two layers of phospholipids (fat) interspersed with protein and cholesterol
- Proteins are:
 - binding sites for hormones,
 - recognition markers for identifying cells
 - adhesive mechanisms for binding adjacent cells to each other
 - channels for transporting materials across plasma membrane

Plasma membrane

• Permeability, P [m/s] P=D/h-D = diffusion coefficient

-h = thickness of the membrane

- Some molecules can easily cross the plasma membrane:
 - gases: oxygen, carbon dioxide
 - small uncharged polar molecules: urea, water
- Other substances must move through the
- protein channels

- large molecules and ions

Plasma membrane

· Permeability

- transport mechanisms:

• passive transport

- movement of dissolved matter toward thermodynamical equilibrium (along the electrochemical gradient)

 - · direct diffusion through the lipid
 - · electro diffusion through the protein channels · facilitated diffusion through channels (carrier mediated)

· active transport - consumes energy

- as a result of the active transport, an equilibrium is achieved
- that differs from the thermo-dynamical equilibrium
- can occur against the electrochemical gradient

Connective tissue

- · Most abundant and widely distributed
- Loose (woven fibers around and between tissues)
- Irregularly dense (protective capsules around organs)
- Regularly dense (ligament and tendons)
- Specialized connective tissues
 - Blood
 - Bone
 - cartilage

Muscle tissue

- Provide movement for the body
- Specialized cells that can shorten in response to stimulation and then return to their uncontracted state
- Types:
 - Skeletal (attached to bones)
 - Smooth (in the walls of vessels)
 - Cardiac (only in the heart)

Major organ systems

- Organs:
 - Combinations of tissues that perform complex tasks
- Organ systems
 - Organs that function together
 - 11 organ systems
 - Integumentary, endocrine, lymphatic, digestive, urinary, reproductive, circulatory, nervous, respiratory, skeletal, muscular

Reproductive

- Functions
 - produces eggs or sperm
 - provides a mechanism for the production and nourishment
- · comprises of
 - ovaries
 - testes
 - reproductive cells
 - accessory glands and ducts
 - mammary gland

Circulatory

• Functions

- serves as distribution system of various substances and solutions for the body
- nutrients, hormones, oxygen
- removes waste products
 - carbon dioxide
- provides mechanism for regulating temperature and removing the heat generated by the metabolic activities of the body's internal organs

Respiratory

functions

- delivers oxygen to the blood from the air
- carries carbon dioxide away
- · comprises of
 - airways
 - upper airways
 - nasal cavity
 - Mouth
 - pharynx, larynx
 lower airways
 - trachea
 - bronchi
 - lungs
 - alve

Nervous

• Functions

- regulates most of the body activities detecting and responding to internal and external stimuli
- higher (intelligent) function
- inglier (intelligent) run
- comprises of
 - central nervous system
 - brain, spinal cord
 - peripheral nervous system
 - somatosensory and motor nerves
 - somatic and autonomic sensory system
 - sensory organs

