Biosignals and Systems

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr
naydin@ieee.org
http://www.yildiz.edu.tr/~naydin

Biosignals and Systems

Lecture 1

Introduction

Introduction

- What is biomedical engineering?
 - Terminology, definitions
 - History of biomedical engineering
 - Sub-branches of BME

- A loose definition of Biomedical Engineering:
 - the application of engineering techniques and analyses to problem-solving in medicine and the biomedical sciences

Diversity in the terminology

- (bio)medical engineering,
- bioengineering, biotechnology
- clinical (medical) engineering
- · medical technology.
- · health care technology

Medical engineering (medical engineer)

- uses engineering concepts and technology for development of
 - instrumentation,
 - diagnostic and therapeutic devices,
 - artificial organs, and
 - other medical devices needed in health care and in hospitals
- role:
 - examine some portion of biology and medicine to identify areas in which advanced technology might be advantageous

Clinical engineering (clinical engineer)

- uses engineering, management concept, and technology
 - to improve health care in hospitals
 - better patient care at minimum costs thought the application of technology
- role is to provide services directly
 - related to patient care together with other health care professionals
 - problems originated from clinical environment

Clinical engineering

- · responsible for
 - equipment effectiveness and
 - electrical safety in medical instrumentation
 - systems and power supply
- · constrained by regulations
 - medical, federal, state, local, governmental, hospital

Bioengineering (bioengineer)

- · basic research-oriented activity closely related to
 - biotechnology and
 - genetic engineering
 - modification of animal or plant cells to improve plants or animals to develop new micro-organisms
- · Bioengineering integrates
 - physical,
 - chemical,
 - mathematical, and
 - computational sciences and
 - engineering principles

to study biology, medicine, behavior, and health.

Bioengineering

- It advances fundamental concepts;
 - creates knowledge from the molecular to the organ systems levels;
 - develops innovative biologics, materials, processes, implants, devices, and informatics approaches

for the

- prevention,
- diagnosis, and
- treatment of disease,

for patient rehabilitation, and for improving health

Biomedical Engineering (BME)

- a growing and expanding interdisciplinary profession
- · concerned with the application of
 - engineering,
 - mathematics,
 - computing, and
 - science methodologies

to the analysis of biological and physiological problems

· produce technological advances in health care

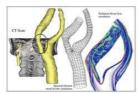
Biomedical Engineering (BME)

- Definition 1:
- · "Biomedical engineering is a discipline that
 - advances knowledge in engineering, biology and medicine, and improves human health through cross-disciplinary activities that integrate the engineering sciences with the biomedical sciences and clinical practice."
- It includes:
 - The acquisition of new knowledge and understanding of living systems through the innovative and substantive application of experimental and analytical techniques based on the engineering sciences.
 - The development of new devices, algorithms, processes and systems that advance biology and medicine and improve medical practice and health care deliver

Biomedical Engineering (BME)

• Definition2:

The use of engineering technology, instrumentation and methods to solve medical problems, such as improving our understanding of physiology and the manufacture of artificial limbs and organs.


Biomedical engineers

- apply different engineering principles
 - electrical and electronics
 - · instrumentation, bioamplifiers
 - mechanical,
 - · artificial limbs, prostheses
 - physical
 - · diagnostic imaging and therapeutic devices
 - - · biosensors, chemical analysers
 - optical,
 - · fiber optics, optical measurements
 - computer science
 - · computational medicine, signal and image analysis, information systems
 - material science
 - · implanted devices, artificial tissues

Biomedical Engineering (BME)

Biomedical engineers

- · to understand, modify, or control biologic systems
- Application of
 - engineering system analysis
 - physiologic modeling,
 - simulation, and
 - control

Biomedical Engineering (BME)

Biomedical engineers

- design and manufacture products that can
 - monitor physiologic functions or
 - display anatomic detail
- Detection, measurement, and monitoring of physiologic signals

 - biomedical instrumentation
 - Medical imaging
- assist in the diagnosis and treatment of patients
 - Computer analysis of patient-related data

 - medical informatics
 - artificial intelligence
- · supervise biomedical equipment maintenance technicians,
- investigate medical equipment failure,
- advise hospitals about purchasing and installing new equipment

Important milestones in the development of medical instruments...

- Thermometer
 - 1603, Galileo
 - 1625, body temperature measurement
- Optical lens
 - 1666, Newton
 - 1850-, ophthalmoscope, Helmholtz
- Stethoscope
- 1819, hollow tube
- 1851, binaural stethoscope
- Hypodermic syringe
- X-ray
- 1895, Roentgen - 1896, in diagnosis and therapy

- Radioactivity
 - 1896, Curie
 - 1903, in therapy
- Electrocardiograph
 - 1887, Waller, capillary meter
 - 1903, Einthoven,
- galvanometer 1928, vacuum tube
- · Electroencephalograph - 1924, Berger
- · pH electrode
- 1906, Cremer
- · Electrical surgical unit, 1928

...Important milestones in the development of medical instruments

- Cyclotron, artificial radionuclides
 - 1936, Lawrence
- Assisting ventilator
- 1928, "iron lung"
- 1945, positive pressure Ultrasonic imaging
- pulse-echo, 1947
- Doppler, 1950s
- - NRM, Bloch, Purcell, 1946

- · Computed tomography - 1969, Cormack, Hounsfield
- · Electrical heart defibrillator
 - 1956, Zoll
 - 1980, implanted
- · Implanted electrical heart pacemaker
 - 1960, Greatbatch
- Heart valves, 1975
- Magnetic Resonance Imaging Cardiac catheter, 1975
 - Artificial kidney (dialysis), 1960
 - · Artificial heart, 1984

Some Branches of BME...

· Biomechanics

- application of classical mechanics to biological or medical problems
- study of movement of biologic solids, fluids and viscoelastic materials, muscle forces
- design of artificial limbs

· Biomaterials:

- study of both living tissue and artificial synthetic biomaterials (polymers, metals, ceramics, composites) used to replace part of a living system or to function in intimate contact with living tissue (implants)
- nontoxic,
 non-carcinogenic
- · chemically inert
- · mechanically strong

...Some Branches of BME...

· Biomedical sensors

physical measurements, biopotential electrodes, electrochemical sensors, optical sensors, bioanalytic sensors

· Bioelectric phenomena:

- origin in nerve and muscle cells
- generation in nerves, brain, heart, skeletal muscles
- analysis,
- modelling,
- recording and
- diagnosis

...Some Branches of BME...

· Biomedical signal processing and analysis

- collection and analysis of data from patients
- bioelectric, physical, chemical signals
- online (embedded) and off-line processing and analysis

· Medical imaging and image processing:

- provision of graphic display of anatomic detail and physiological functions of the body
- medical imaging methods and devices
 - physical phenomena + detectors + electronic data processing+ graphic display = image
 - · x-ray, gamma photons, MRI, Ultrasound

...Some Branches of BME...

· Medical instruments and devices:

- design of medical instruments and devices to monitor and measure biological functions
- application of electronics and measurement techniques to develop devices used in diagnosis and treatment of disease
 - biopotential amplifiers
 - · patient monitors
 - · electrosurgical devices

Biotechnology

- technology at cellular level

...Some Branches of BME...

· Cell and tissue engineering:

- utilization of anatomy, biochemistry and mechanics of cellular and subcellular structures to understand disease processes and to be able to intervene at very specific sites.
- design, construction, modification, growth and maintenance of living tissue (bioartificial tissue and alteration of cell growth and function)

• Rehabilitation engineering:

 application of science and technology to improve the quality of life for individuals with physical and cognitive impairments (handicaps)

...Some Branches of BME...

· Prostheses and artificial organs

- design and development of devices for replacement of damaged body parts
 - · artificial heart.
 - · circulatory assist devices,
 - · cardiac valve prosthes
 - · artificial lung and blood-gas exchange devices,
- artificial kidney, pancreas

· Clinical engineering:

medical engineering in hospitals, managementand assessment of medical technology, safety and management of medical equipment, product development

...Some Branches of BME

- · Physiologic modelling, simulation and control
 - use of computer simulation to help understand physiological relationships and organ function, to predict the behavior of a system of interests (human body, particular organs or organ systems and medical devices)
 - developing of theoretical (computational, analytical, conceptual etc) models
- · Medical informatics:
 - hospital information systems, computer-based patient records, computer networks in hospitals, artificial knowledge-based medical decision making
- · Bioinformatics
 - The application of information technology to problem areas in healthcare systems, as well as genomics, proteomics, and mathematical modelling.

Medical devices

- Medical devices can be grouped according to the three areas of medicine:
- · Diagnosis
 - diagnostic devices
- Therapy
 - therapeutic devices
 - application of energy
- Rehabilitation
 - Application of Assisting orthotic-prosthetic devices

Diagnostic devices

- · Types of diagnostic devices
 - recording and monitoring devices
 - measurement and analysis devices
 - imaging devices
- importance of diagnostic devices
 - enhance and extend the five human senses to improve to collect data from the patient for diagnosis
 - the perception of the physician can be improved by diagnostic instrumentation in many ways:
 - amplify human senses
 - place the observer's senses in inaccessible environments
 - · provide new senses

Therapeutic devices

- · Objective of therapeutic devices:
 - deliver physical substances to the body to treat disease
- · Physical substances:
 - Voltage, current
 - Pressure
 - Flow
 - Force
 - Ultrasound
 - Electromagnetic radiation
 - Heat
- Therapeutic device categories:
 - devices used to treat disorders
 - devices to assist or control the physiological functions

Assistive or rehabilitative devices

- · Objective of rehabilitative devices
 - to assist individuals with a disability
- The disability can be connected to the troubles to
 - perform activities of daily living
 - limitations in mobility
 - communications disorders and
 - sensory disabilities
- Types of rehabilitative devices
 - Orthopedic devices
 - An orthopedic device is an appliance that aids an existing function
 - Prosthetic devices
 - A prosthesis provides a substitute

Some characteristics of BME

- methods and devices are used to solve medical problems
 - problems are difficult, diverse, and complex
 - solution alternatives are limited and specific to a certain problem
- Therefore we must know
 - what we are measuring or studying
 - what we are treating
 - which methodologies are available and applicable

Some characteristics of BME

- deals with biological tissues, organs and organ systems and their properties and functions
- · bio-phenomena:
 - bioelectricity, biochemistry, biomechanics, biophysics
- · requires their deep understanding and analysis
- · Accessibility of data is limited,
- · Interface between tissue and instrumentation is needed
- Procedures:
 - non-invasive
 - minimally invasive
 - invasive

Relationship of BME with other disciplines

- Relationship with Medicine
- Relationship with Physics
- Relationship with other fields of engineering

Relationship with Medicine

- Biomedical Engineering
 - application of engineering science and technology to problems arising in medicine and biology.
 - intersections between engineering disciplines
 - electrical, mechanical, chemical,...
 - with each discipline in medicine, such as cardiology, pathology, neurology, ...
 - biology
 - · biochemistry, pharmacology,
 - \bullet molecular biology, cell biology, \dots

Physiological measurements

- · important application of medical devices
 - physiological measurements and recordings
- · important for biomedical engineer
 - to understand the technology used in these recordings but also
 - the basic principles and methods of the physiological recordings
- medical fields where physiological recordings play an important role
 - clinical physiology
 - clinical neurophysiology
 - cardiology
 - intensive care, surgery

important physiological parameters recorded

- · parameters related to cardiovascular dynamics:
 - blood pressure
 - blood flow
 - blood volumes, cardiac output
- biopotentials:
 - electrocardiogram (ECG),
 - electroencephalogram (EEG),
- electromyogram (EMG)
- respiratory parameters:
 lung volumes and capacities,
 - air flow
- blood gases:
 - pressures of blood gases
 - oxygen saturation
 - pH and other ion

Relationship with Physics

- BME is closely related to physical sciences
- · Medical Physics
 - applies physics in medicine
 - physical background of medical imaging methods used in radiology and nuclear medicine:
 - the production and safety issues of ionizing radiation,
 - interaction of the radiation with matter,
 - the physics of magnetic resonance phenomenon, ultrasonics, light etc.
 - physical background of radiotherapy
 - · use of ionizing radiation to treat cancer

Relationship with Physics

- Biophysics

 - more related to (cell) biology studies the processes in biolog
- physical methods are applied
 - for molecules, cells, tissues, organs, body
 - to solve biologic problems,
 - biologic events are described using the concept of physics and analogues, and
 - the effects of physical factors on biologic processes is examined
- - changes in state of the systems (P.V.T)
 - concentrations, osmolarities

 - internal energy, spontaneous processes
 - (electro)chemical equilibrium
 - enzyme reactions

 - permeability

Relationship with other fields of engineering

- · BME applies principles and methods from engineering, science and technology
- · closely related to many fields of engineering,
 - chemistry
 - computer science
 - electrical engineering
 - electronics, electromagnetic fields, signal and systems analysis
 - mathematics, statistics
 - measurement and control engineering
 - mechanical engineering
 - material science
 - physics etc.

Medical Terminology

- · Importance of common language
 - essential for a meaningful communication,
 - · especially between people representing different disciplines, like medicine and engineering.
- · Physicians language is often regarded as obscure
- · Medical terms are international, derived from the Greek and Latin!
- · construction of the medical terms:
 - root (word base)
 - prefixes
 - suffixes
 - linking or combining vowels

Examples

- · "Pericarditis"
 - prefix: peri-= "surrounding"
 - root: cardi = "heart"
 - suffix: -itis = "inflammation"
 - · = an inflammation of the area surrounding the heart, or an inflammation of the outer layer of the heart, anatomically known as the pericardium
- · "Phonocardiography"
 - phono = sound:
 - cardi = heart;
 - graph = write
 - = graphic recording of heart sounds

Some common prefixes

without, not anemia, anesthesia • a(n)-• antiagainst antibiotic • bi-.didouble.two bipolar, dipolar · dysbad, faulty dysfunction

endowithin, inward endoscope, endocardium • epioutside epicardium outside • extraextrasystole • hemihalf hemisphere

abnormally high · hyperhypertrophy, hypertension · hypoabnormally low hypothermia, hypoxia

Some common prefixes

intercellular, intercostal · interbetween • intrawithin intracellular, intravascular

paralysis • parabeside, faulty disease pathology · patho-

through peroral, percutaneous perperiaround pericardium, peritoneum

polyarthritis · polymany · retrobackward retrograde

· subunder subcutaneous, subacute

Some common suffixes

• -esthesia feeling an esthesia• -genesis origination neurogenetic • -ia abnormal state claustrophobia • -pathy disease myopathy hemiplegia • -plegia paralysis • -scope viewing microscope, endoscope• -trophy development hypertrophy

Terms for indicating location, direction

• Superior inferior • Distal proximal · medial lateral • anterior (ventral) posterior (dorsal) superficial deep • afferent efferent • descending ascending • frontal sagittal • internal external dexter sinister

Examples of some medical and clinical abbreviations

abbititations			
• AP	anteroposterior	• I.V.	intravenous
 AV 	atrio-ventricular	• LAO	left anterior oblique
 BP 	Blood pressure	 LV 	left ventricular
• CO • CT	Cardiac output computed tomography	• MRI	magnetic resonance imaging
• ECG • EMG	electrocardiogram electromyogram	• NMR	nuclear magnetic resonance
• ERG	electroretinogram	• PA • RAO	posteroanterior right anterior oblique
• FVC • GI	forced vital capacity gastrointestinal	• RR	Riva-Rocci, blood pressure
• GSR • HVL • ICU	galvanic skin resistance half value layer intensive care unit	• SA • VF, VT	Sinuatrial ventricular fibrillation, tachycardia