Advanced Digital Signal Processing

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr naydin@ieee.org http://www.yildiz.edu.tr/~naydin

Digital Signal Processing

Some basics: Sinusoids

What's a signal

- A signal can be defined as
 - a pattern of variations of a physical quantity that can be manipulated, stored, or transmitted by physical process.
 - an information variable represented by physical quantity.
 - For digital systems, the variable takes on discrete values.
- In the mathematical sense it is a function of time, x(t), that carries an information.

• More complicated signal (BAT.WAV)

- Waveform *x*(*t*) is NOT a Sinusoid
- Theory will tell us
 - -x(t) is approximately a sum of sinusoids
 - FOURIER ANALYSIS
 - Break *x*(*t*) into its sinusoidal components
 - Called the FREQUENCY SPECTRUM

Two-dimensional stationary signal

- This is a two dimensional signal (an image)
- A spatial pattern not varying in time Represented
- mathematically as a function of two spatial variables (x,y)
- However, videos are timevarying images that involves three independent variables (x,y,t)

DIGITIZE the WAVEFORM

- x[n] is a SAMPLED SINUSOID
 A list of numbers stored in memory
- Sample at 11,025 samples per second - Called the SAMPLING RATE of the A/D - Time between samples is
 - 1/11025 = 90.7 microsec
- Output via D/A hardware (at F_{samp})

STORING DIGITAL SOUND

- x[n] is a SAMPLED SINUSOID
 A list of numbers stored in memory
- CD rate is 44,100 samples per second
- 16-bit samples
- Stereo uses 2 channels
- Number of bytes for 1 minute is
 2 x (16/8) x 60 x 44100 = 10.584 Mbytes

Property	Equation		
Equivalence	$\sin \theta = \cos(\theta - \pi/2)$ or $\cos(\theta) = \sin(\theta + \pi/2)$		
Periodicity	$\cos(\theta + 2\pi k) = \cos \theta$, when k is an integer		
Evenness of cosine	$\cos(-\theta) = \cos\theta$		
Oddness of sine	$\sin(-\theta) = -\sin\theta$		
Zeros of sine	$sin(\pi k) = 0$, when k is an integer		
Ones of cosine	$cos(2\pi k) = 1$ when k is an integer.		
Minus ones of cosine	$\cos[2\pi(k+\frac{1}{2})] = -1$, when k is an integer.		

Number	Equation
1	$\sin^2\theta + \cos^2\theta = 1$
2	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$
3	$\sin 2\theta = 2\sin\theta\cos\theta$
4	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
5	$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$

NEGATIVE FREQUENCY

- Is negative frequency real?
- Doppler Radar provides an example
 - Police radar measures speed by using the Doppler shift principle
 - Let's assume 400Hz $\leftarrow \rightarrow$ 60 mph
 - +400Hz means towards the radar
 - -400Hz means away (opposite direction)
 - Think of a train whistle

SPECTRUM of SINE • Sine = sum of 2 complex exponentials: $A \sin(7t) = \frac{A}{2j} e^{j7t} - \frac{A}{2j} e^{-j7t}$ $= \frac{1}{2} A e^{-j0.5\pi} e^{j7t} + \frac{1}{2} A e^{j0.5\pi} e^{-j7t}$ $= \frac{-1}{j} = j = e^{j0.5\pi}$ - Positive freq. has phase = -0.5 π - Negative freq. has phase = +0.5 π

Sum of 5 Frequency Components				
<i>f_k</i> (Hz)	X _k	Mag	Phase (rad)	
200	(771 + j12202)	12,226	1.508	
400	(-8865 + j28048)	29,416	1.876	
500	(48001 - j8995)	48,836	-0.185	
1600	(1657 - j13520)	13,621	-1.449	
1700	4723 + j0	4723	0	
able 3.1: Com ound "ah".	plex amplitudes for harmonic	signal that ap	proximates the vov	

