BLM6112

Advanced Computer Architecture
Thread-Level Parallelism

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://wwwa3.yildiz.edu.tr/~naydin

Types

(SMP)
Small number of cores
Share single memory with
uniform memory latency

» Symmetric multiprocessors :)

« Distributed shared memory

DSM FUNEY [.

(— Mer)nory distributed among _l —J
processors — — ~ —
Non-uniform memory :‘"D “"D D :’“)

access/latency (NUMA) \‘*‘_I*;J“'_I*Q \»-_._'_,»«_F =)
Processors connected via ‘ S

direct (switched) and non- —)
direct (multi-hop) s} Y e (%) (M (5 Y B
interconnection networks _,E:_)_‘ _/..,,:)_’ _.C.)_)_....j_,

Cache Coherence

 Coherence
— All reads by any processor must return the most
recently written value
— Writes to the same location by any two processors
are seen in the same order by all processors

« Consistency
— When a written value will be returned by a read
— If a processor writes location A followed by
location B, any processor that sees the new value of
B must also see the new value of A

Introduction

 Thread-Level parallelism
— Have multiple program counters
— Uses MIMD model
— Targeted for tightly-coupled shared-memory
multiprocessors

« For n processors, need n threads

» Amount of computation assigned to each thread
= grain size
— Threads can be used for data-level parallelism, but
the overheads may outweigh the benefit

Cache Coherence

« Processors may see different values through
their caches:

Cache contents for Cache contents for Memory contents for
Time Event processor A processor B location X

0 1

Processor A reads X 1 1

Processor B reads X 1 1 1

Processor A stores 0 1 0
0o X

Enforcing Coherence

« Coherent caches provide:
— Migration: movement of data
— Replication: multiple copies of data

« Cache coherence protocols
— Directory based
« Sharing status of each block kept in one location
— Snooping
« Each core tracks sharing status of each block

mailto:naydin@yildiz.edu.tr

Snoopy Coherence Protocols

» Write invalidate
— On write, invalidate all other copies
— Use bus itself to serialize
« Write cannot complete until bus access is obtained

Contents of processor Contents of processor Contents of memoary
Processor activity Bus activity N's cache B's cache location X

0

Processor A reads X Cache miss 0 0
for X

Processor B reads X Cache miss 0 o 0
for X

Processor A writes a Invalidation 1 0
1o X for X

Processor B reads X Cache miss 1 1 1
for X

» Write update
— On write, update all copies

Snoopy Coherence Protocols

State of Type of

addressed cache

Request Source cache block _action Function and explanation

Read bt Processor Shared or Nommihe Read i in bocal cache

odified

Read Processor lavabd Normul mise bos.

Read Processcr Shared Replacement Address confict miss: place read mass on bus.

Read Processce Modkfied Replacement Ad 1 miss write buck block. then place read

Woite it Procewsor_ Modified Noami ha W Tocal cache.

Wrtchit Processor Shared Coberemce Pl These operstiom are chien called
p wes, bocawse they do net feich the
din ¢ the aate

Wrte Pocessor lavahd Noawal miss Plac ™

Wite Processor Shared Replacement Address conflict miss

miss

Wite Processor Modified Replacement

miss

Real Bus Shared Noaceon Allow shared cache or memcry 10 service resd M.

Read Bu Mok fied Cohereace Atier 10 read shared dat place cache block on bus,

miss write back bock. and change stte o sharad

v Bus Sharod Cobereace _ Atiomp to write sharod block. ivalidase e block.
Wre Bu Sharod Cohereace Atiemy 10 wrie hared block: mvalidate the cache block.

Wite Bu Modfied Cohereace Aty to wrie block that i ewhere. win
™ back the cache block and make s stie invald n the local
cache

Snoopy Coherence Protocols

+ Complications for the basic MSI protocol:
— Operations are not atomic
« E.g. detect miss, acquire bus, receive a response
« Creates possibility of deadlock and races
» One solution: processor that sends invalidate can hold
bus until other processors receive the invalidate

 Extensions:
— Add exclusive state to indicate clean block in only
one cache (MESI protocol)
« Prevents needing to write invalidate on a write
— Owned state

Snoopy Coherence Protocols

» Locating an item when a read miss occurs
— In write-back cache, the updated value must be sent
to the requesting processor

« Cache lines marked as shared or
exclusive/modified
— Only writes to shared lines need an invalidate

broadcast
« After this, the line is marked as exclusive

Snoopy Coherence Protocols

Coherence Protocols: Extensions

+ Shared memory bus
and snooping
bandwidth is
bottleneck for scaling
symmetric
multiprocessors
— Duplicating tags
— Place directory in
outermost cache

— Use crossbars or
point-to-point
networks with banked
memory

Coherence Protocols

 Every multicore with >8 processors uses an

interconnect other than bus

— Makes it difficult to serialize events

— Write and upgrade misses are not atomic

— How can the processor know when all invalidates
are complete?

— How can we resolve races when two processors
write at the same time?

— Solution: associate each block with a single bus

Performance Study: Commercial Workload
1004 -
904 8 idie
o PAL code

g ¥ = LI caho access
= 704 I ® Instruction execution
2 60
8 -
§ 40
E 30
2 204

104

0 1 2 4

L3 cache size (MB)

Performance Study: Commercial Workload

Memory cycles per instruction

| Instruction

@ Capacity/conflict
o Compulsory
W False sharing

m True sharing I

1 2 4 6 8
Processor count

Performance

+ Coherence influences cache miss rate
— Coherence misses
« True sharing misses
— Write to shared block (transmission of invalidation)
— Read an invalidated block
* False sharing misses
— Read an unmodified word in an invalidated block

Performance Study: Commercial Workload

Memory cycles per instruction
o

- ~) w
~ Ny [
IR o

w

[
o

& Instructon

m Trug sharing

1 8

2 4
Cache size (MB)

Performance Study: Commercial Workload

Misses per 1000 instrucfons

@ Instruction
| Capacity/conflict

O Compuisary
W Faiso sharing
I W True sharing

32 64 128 256
Block size (bytes)

Directory Protocols Directory Protocols

» Snooping schemes require communication + Alternative approach:
among all caches on every cache miss — Distribute memory
— Limits scalability
— Another approach: Use centralized directory to

keep track of every block
+ Which caches have each block
« Dirty status of each block

 Implement in shared L3 cache
— Keep bit vector of size = # cores for each block in

L3 @ Directory Directory Orectory |
— Not scalable beyond shared L3] gD | () [ererj-{0) [Memafi{0)

~
/Mutticore Muticore! /Muticore /Austoor
{ processor processor processor | processor
\+ caches, \# caches, \# caches, & caches,

19 20
Directory Protocols Messages
« For each block, maintain state: Masiign -
_ Shared type Source Destination contents Function of this message
. Read miss Local cache Home PA Node P has a read miss at address A: request data and make P a
« One or more nodes have the block cached, value in directory read sharer
memory |S Up-tO-date Wnite Local cache ‘l]«lnru' P A ;«;:dc I’Ilm\ awnie miss at address A;request dats and make P
o ey iy
« Set of node 1Ds Invalidste Local cache Home A Request to send invalidates to all remote caches that arc|
o U ncached directory caching the block at address A
M Od |f|ed Invalidate :."“n:m :l:nh:u A Invalidate a shared copy of data at address A.
+ Exactly one node has a copy of the cache block, value in e, e e Ak A bl e b s T
memory is out-of-date Fewch/ Home Remote A Fetch the block at address A and send it 1o its home directory;
. invaidate directory cache invalidate the block in the cache.
Ownel‘ nOde ID Data Home Local cache D Return a dats value from the home memory.
value directory
. . . reply
« Directory maintains block states and sends Dux Remor Hom AD Weikbeck dea vake for s A
B B = write- cache directo
invalidation messages bk £
21 22
Directory Protocols Directory Protocols

* For uncached block:
— Read miss
» Requesting node is sent the requested data and is
made the only sharing node, block is now shared
— Write miss
 The requesting node is sent the requested data and
becomes the sharing node, block is now exclusive
* For shared block:
— Read miss
 The requesting node is sent the requested data from
memory, node is added to sharing set
— Write miss
« The requesting node is sent the value, all nodes in the
sharing set are sent invalidate messages, sharing set

only contains requesting node, block is now exclusive
23 24

Directory Protocols Synchronization

« For exclusive block: « Basic building blocks:
— Read miss — Atomic exchange
 The owner is sent a data fetch message, block Swaps register with memory location
becomes shared, owner sends data to the directory, — Test-and-set
data written back to memory, sharers set contains old « Sets under condition
owner and requestor — Fetch-and-increment
— Data write back) « Reads original value from memory and increments it in
* Block becomes uncached, sharer set is empty memory
— Write miss — Requires memory read and write in uninterruptable
+ Message is sent to old owner to invalidate and send instruction

the value to the directory, requestor becomes new

: 1 — RISC-V: load reserved/store conditional
owner, block remains exclusive

« If the contents of the memory location specified by the
load linked are changed before the store conditional to the
same address, the store conditional fails

25 26
Implementing Locks Implementing Locks
+ Atomic exchange (EXCH): « Lock (no cache coherence)
try: mov x3,x4 ;mov exchange value addi x2,R0,#1
Ir x2,x1 ;load reserved from lockit: EXCH x2,0(x1) ;atomic exchange
sc x3,0(x1) ;store conditional bnez x2,locket ;already locked?
bnez x3,try ;branch store fails
mov x4,x2 ;put load value in x4? . LOCk (CaChe COherence)'
.) lockit: Id x2,0(x1) ;load of lock
« Atomic increment: bnez x2,locket ;not available-spin
try: Ir x2,x1 ;load reserved 0(x1) addi x2,R0,#1 ;load locked value
addi x3,x2,1 sincrement EXCH x2,0(x1) ;swap
sc x3,0(x1) ;store conditional bnez x2,locket ;branch if lock wasn’t 0
bnez x3,try ;branch store fails
27 28
Implementing Locks Models of Memory Consistency
« Advantage of this scheme: reduces memory Processor: gf_ogeif?
traffic N o
Coherence A=1 B=1
state of lock at i
Swp PO (2] [endof step Busidirectory activity if (B==0) ... if (A==0) ...
1 Has lock Begins spin. testing Begins spin, Shared Cache misses for P1 and P2 satisfied
if lock =0 testing if lock =0 in cither onder, Lock state becomes
shared . . .
Stk v e Fachuie 19) Wk nvabdoe:of ok vl + Should be impossible for both if-statements to be
3 Cache miss ‘Cache miss Shared Buskiton sevkes P2 cache evaluated as true
3 T TR T — o * Delayed write invalidate?
s ‘n‘,x:‘xm?n = ::::;‘m...» Shared Cache miss for P satisfied.
; e f-..m,tm.p T 73 iy o 7 e + Sequential consistency:
b <V S e — Result of execution should be the same as long as:
7 Swep gl s il Exclusive (P1) ;;:z.::d:;’;{!‘;:r:‘t:mm « Accesses on each processor were kept in order
> ;,:;\h‘kq.:@ 2 A from P2 « Accesses on different processors were arbitrarily interleaved

tock =0

Implementing Locks

» To implement, delay completion of all
memory accesses until all invalidations
caused by the access are completed
— Reduces performance!

« Alternatives:

— Program-enforced synchronization to force write
on processor to occur before read on the other
processor

* Requires synchronization object for A and another for
B

— “Unlock” after write
“Lock” after read

Relaxed Consistency Models

Ordinary
Model Used in orderings Synchronization orderings
Scquential consistency Most machines as an R—R R—W S—=W,S—~RR—S W—§§-§
optional mode W—R, W—W
IBMS/370, DEC VAX, R—~R R—W S—<W,S—<RR—=S W—§ §-§
SPARC W W
SPARC R—~R R—W S =W, S <R R—~S W-—§ §—~§
Weak ordering PowerC S—~W. S <R R—~S W-~§ §-~§
Release consistency S, Ww.§ R.R—Sy, W5,
SA—Sp Sa—Sp, Se—~Sp. S —S

Fallacies and Pitfalls

Measuring performance of multiprocessors by
linear speedup versus execution time

* Amdahl’s Law doesn’t apply to parallel
computers

Linear speedups are needed to make
multiprocessors cost-effective

— Doesn’t consider cost of other system components
Not developing the software to take advantage
of, or optimize for, a multiprocessor
architecture

Relaxed Consistency Models

Rules:
-X-Y
« Operation X must complete before operation Y is done

« Sequential consistency requires:
R—>W,R>RW-RW—-W

— Relax W — R

* “Total store ordering”

—Relax W —» W

 “Partial store order”

—Relax R > Wand R - R
* “Weak ordering” and “release consistency”

Relaxed Consistency Models
Consistency model is multiprocessor specific

Programmers will often implement explicit
synchronization

Speculation gives much of the performance

advantage of relaxed models with sequential

consistency

— Basic idea: if an invalidation arrives for a result that
has not been committed, use speculation recovery

