
1

BLM6112

Advanced Computer Architecture
Thread-Level Parallelism

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

1

Introduction

• Thread-Level parallelism
– Have multiple program counters
– Uses MIMD model
– Targeted for tightly-coupled shared-memory

multiprocessors

• For n processors, need n threads

• Amount of computation assigned to each thread
= grain size
– Threads can be used for data-level parallelism, but

the overheads may outweigh the benefit

2

Types

• Symmetric multiprocessors
(SMP)
– Small number of cores
– Share single memory with

uniform memory latency

• Distributed shared memory
(DSM)
– Memory distributed among

processors
– Non-uniform memory

access/latency (NUMA)
– Processors connected via

direct (switched) and non-
direct (multi-hop)
interconnection networks

3

Cache Coherence

• Processors may see different values through
their caches:

4

Cache Coherence

• Coherence
– All reads by any processor must return the most

recently written value
– Writes to the same location by any two processors

are seen in the same order by all processors

• Consistency
– When a written value will be returned by a read
– If a processor writes location A followed by

location B, any processor that sees the new value of
B must also see the new value of A

5

Enforcing Coherence

• Coherent caches provide:
– Migration: movement of data
– Replication: multiple copies of data

• Cache coherence protocols
– Directory based

• Sharing status of each block kept in one location

– Snooping
• Each core tracks sharing status of each block

6

mailto:naydin@yildiz.edu.tr

2

Snoopy Coherence Protocols

• Write invalidate
– On write, invalidate all other copies
– Use bus itself to serialize

• Write cannot complete until bus access is obtained

• Write update
– On write, update all copies

7

Snoopy Coherence Protocols

• Locating an item when a read miss occurs
– In write-back cache, the updated value must be sent

to the requesting processor

• Cache lines marked as shared or
exclusive/modified
– Only writes to shared lines need an invalidate

broadcast
• After this, the line is marked as exclusive

8

Snoopy Coherence Protocols

9

Snoopy Coherence Protocols

10

Snoopy Coherence Protocols

• Complications for the basic MSI protocol:
– Operations are not atomic

• E.g. detect miss, acquire bus, receive a response
• Creates possibility of deadlock and races
• One solution: processor that sends invalidate can hold

bus until other processors receive the invalidate

• Extensions:
– Add exclusive state to indicate clean block in only

one cache (MESI protocol)
• Prevents needing to write invalidate on a write

– Owned state

11

Coherence Protocols: Extensions

• Shared memory bus
and snooping
bandwidth is
bottleneck for scaling
symmetric
multiprocessors
– Duplicating tags
– Place directory in

outermost cache
– Use crossbars or

point-to-point
networks with banked
memory

12

3

Coherence Protocols

• Every multicore with >8 processors uses an
interconnect other than bus
– Makes it difficult to serialize events
– Write and upgrade misses are not atomic
– How can the processor know when all invalidates

are complete?
– How can we resolve races when two processors

write at the same time?
– Solution: associate each block with a single bus

13

Performance

• Coherence influences cache miss rate
– Coherence misses

• True sharing misses
– Write to shared block (transmission of invalidation)
– Read an invalidated block

• False sharing misses
– Read an unmodified word in an invalidated block

14

15

Performance Study: Commercial Workload Performance Study: Commercial Workload

16

17

Performance Study: Commercial Workload

18

Performance Study: Commercial Workload

4

Directory Protocols

• Snooping schemes require communication
among all caches on every cache miss
– Limits scalability
– Another approach: Use centralized directory to

keep track of every block
• Which caches have each block
• Dirty status of each block

• Implement in shared L3 cache
– Keep bit vector of size = # cores for each block in

L3
– Not scalable beyond shared L3

19

Directory Protocols

• Alternative approach:
– Distribute memory

20

Directory Protocols

• For each block, maintain state:
– Shared

• One or more nodes have the block cached, value in
memory is up-to-date

• Set of node IDs

– Uncached
– Modified

• Exactly one node has a copy of the cache block, value in
memory is out-of-date

• Owner node ID

• Directory maintains block states and sends
invalidation messages

21

Messages

22

Directory Protocols

23

Directory Protocols

• For uncached block:
– Read miss

• Requesting node is sent the requested data and is
made the only sharing node, block is now shared

– Write miss
• The requesting node is sent the requested data and

becomes the sharing node, block is now exclusive

• For shared block:
– Read miss

• The requesting node is sent the requested data from
memory, node is added to sharing set

– Write miss
• The requesting node is sent the value, all nodes in the

sharing set are sent invalidate messages, sharing set
only contains requesting node, block is now exclusive

24

5

Directory Protocols

• For exclusive block:
– Read miss

• The owner is sent a data fetch message, block
becomes shared, owner sends data to the directory,
data written back to memory, sharers set contains old
owner and requestor

– Data write back
• Block becomes uncached, sharer set is empty

– Write miss
• Message is sent to old owner to invalidate and send

the value to the directory, requestor becomes new
owner, block remains exclusive

25

Synchronization

• Basic building blocks:
– Atomic exchange

• Swaps register with memory location

– Test-and-set
• Sets under condition

– Fetch-and-increment
• Reads original value from memory and increments it in

memory

– Requires memory read and write in uninterruptable
instruction

– RISC-V: load reserved/store conditional
• If the contents of the memory location specified by the

load linked are changed before the store conditional to the
same address, the store conditional fails

26

Implementing Locks

• Atomic exchange (EXCH):
try: mov x3,x4 ;mov exchange value

lr x2,x1 ;load reserved from

sc x3,0(x1) ;store conditional

bnez x3,try ;branch store fails

mov x4,x2 ;put load value in x4?

• Atomic increment:
try: lr x2,x1 ;load reserved 0(x1)

addi x3,x2,1 ;increment

sc x3,0(x1) ;store conditional

bnez x3,try ;branch store fails

27

Implementing Locks

• Lock (no cache coherence)
addi x2,R0,#1

lockit: EXCH x2,0(x1) ;atomic exchange

bnez x2,locket ;already locked?

• Lock (cache coherence):
lockit: ld x2,0(x1) ;load of lock

bnez x2,locket ;not available-spin

addi x2,R0,#1 ;load locked value

EXCH x2,0(x1) ;swap

bnez x2,locket ;branch if lock wasn’t 0

28

Implementing Locks

• Advantage of this scheme: reduces memory
traffic

29

Models of Memory Consistency

Processor 1: Processor 2:

A=0 B=0

… …

A=1 B=1

if (B==0) … if (A==0) …

• Should be impossible for both if-statements to be

evaluated as true

• Delayed write invalidate?

• Sequential consistency:
– Result of execution should be the same as long as:

• Accesses on each processor were kept in order

• Accesses on different processors were arbitrarily interleaved

30

6

Implementing Locks

• To implement, delay completion of all
memory accesses until all invalidations
caused by the access are completed
– Reduces performance!

• Alternatives:
– Program-enforced synchronization to force write

on processor to occur before read on the other
processor

• Requires synchronization object for A and another for
B

– “Unlock” after write
– “Lock” after read

31

Relaxed Consistency Models

• Rules:
– X → Y

• Operation X must complete before operation Y is done
• Sequential consistency requires:

– R → W, R → R, W → R, W → W

– Relax W → R
• “Total store ordering”

– Relax W → W
• “Partial store order”

– Relax R → W and R → R
• “Weak ordering” and “release consistency”

32

Relaxed Consistency Models

33

Relaxed Consistency Models

• Consistency model is multiprocessor specific

• Programmers will often implement explicit
synchronization

• Speculation gives much of the performance
advantage of relaxed models with sequential
consistency
– Basic idea: if an invalidation arrives for a result that

has not been committed, use speculation recovery

34

Fallacies and Pitfalls

• Measuring performance of multiprocessors by
linear speedup versus execution time

• Amdahl’s Law doesn’t apply to parallel
computers

• Linear speedups are needed to make
multiprocessors cost-effective
– Doesn’t consider cost of other system components

• Not developing the software to take advantage
of, or optimize for, a multiprocessor
architecture

35 36

