BLM6112 Advanced Computer Architecture

Thread-Level Parallelism

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

Introduction

- Thread-Level parallelism
 - Have multiple program counters
 - Uses MIMD model
 - Targeted for tightly-coupled shared-memory multiprocessors
- For *n* processors, need *n* threads
- Amount of computation assigned to each thread = grain size
 - Threads can be used for data-level parallelism, but the overheads may outweigh the benefit

Cache Coherence

Cache contents for processor B

• Processors may see different values through

Cache co

2

Types

- Symmetric multiprocessors (SMP)

 Small number of cores
 - Small number of cores
 Share single memory with uniform memory latency
 - uniform memory latency
- Distributed shared memory (DSM)
- Memory distributed among processors
 Non-uniform memory
- Non-uniform memory access/latency (NUMA)
- Processors connected via direct (switched) and nondirect (multi-hop)
- direct (multi-hop) interconnection networks

Cache Coherence

- Coherence
 - All reads by any processor must return the most recently written value
 - Writes to the same location by any two processors are seen in the same order by all processors
- Consistency
 - When a written value will be returned by a read
 - If a processor writes location A followed by
 - location B, any processor that sees the new value of B must also see the new value of A

Enforcing Coherence

- Coherent caches provide:
 - Migration: movement of data
 - Replication: multiple copies of data
- · Cache coherence protocols
 - Directory based

5

their caches:

cessor A reads

Processor B reads X Processor A stores 0 into X

- Sharing status of each block kept in one location Snooping
- Each core tracks sharing status of each block

Snoopy Coherence Protocols

• Write invalidate

- On write, invalidate all other copies

Use bus itself to serialize

• Write cannot complete until bus access is obtained

		*			
Processor activity	Bus activity	Contents of processor A's cache	Contents of processor B's cache	Contents of memory location X	
				0	
Processor A reads X	Cache miss for X	0		0	
Processor B reads X	Cache miss for X	0	0	0	
Processor A writes a 1 to X	Invalidation for X	1		0	
Processor B reads X	Cache miss for X	1	1	1	

- Write update
 - On write, update all copies

Snoopy Coherence Protocols

- Locating an item when a read miss occurs - In write-back cache, the updated value must be sent to the requesting processor
- · Cache lines marked as shared or exclusive/modified
 - Only writes to shared lines need an invalidate broadcast
 - · After this, the line is marked as exclusive

Snoopy Coherence Protocols

Request	Source	State of addressed cache block	Type of cache action	Function and explanation
Read hit	Processor	Shared or modified	Normal hit	Read data in local cache.
Read miss	Processor	Invalid	Normal miss	Place read miss on bus,
Read miss	Processor	Shared	Replacement	Address conflict miss: place read miss on bus.
Read miss	Processor	Modified	Replacement	Address conflict miss: write-back block; then place read miss on bus.
Write hit	Processor	Modified	Normal hit	Write data in local cache.
Write hit	Processor	Shared	Coherence	Place invalidate on bus. These operations are often called upgrade or <i>ownership</i> misses, because they do not fetch the data but only change the state.
Write miss	Processor	Invalid	Normal miss	Place write miss on bus,
Write miss	Processor	Shared	Replacement	Address conflict miss: place write miss on bus.
Write miss	Processor	Modified	Replacement	Address conflict miss: write-back block; then place write miss on bus.
Read miss	Bus	Shared	No action	Allow shared cache or memory to service read miss.
Read miss	Bus	Modified	Coherence	Attempt to read shared data: place cache block on bus, write-back block, and change state to shared.
Invalidate	Bus	Shared	Coherence	Attempt to write shared block; invalidate the block.
Write miss	Bus	Shared	Coherence	Attempt to write shared block; invalidate the cache block;
Write	Bus	Modified	Coherence	Attempt to write block that is exclusive elsewhere; write- back the cache block and make its state invalid in the local

Snoopy Coherence Protocols

Snoopy Coherence Protocols

- Complications for the basic MSI protocol: - Operations are not atomic
 - - E.g. detect miss, acquire bus, receive a response • Creates possibility of deadlock and races
 - One solution: processor that sends invalidate can hold
 - bus until other processors receive the invalidate
- Extensions:
 - Add exclusive state to indicate clean block in only one cache (MESI protocol)
 - · Prevents needing to write invalidate on a write
 - Owned state

Coherence Protocols: Extensions

· Shared memory bus and snooping bandwidth is bottleneck for scaling symmetric multiprocessors

- Duplicating tags

- Place directory in outermost cache
- Use crossbars or

11

point-to-point networks with banked memory

Coherence Protocols

- Every multicore with >8 processors uses an interconnect other than bus
 - Makes it difficult to serialize events
 - Write and upgrade misses are not atomic
 - How can the processor know when all invalidates are complete?
 - How can we resolve races when two processors write at the same time?
 - Solution: associate each block with a single bus

Performance

Coherence influences cache miss rate

Coherence misses

13

15

17

- True sharing misses Write to shared block (transmission of invalidation) Read an invalidated block
- False sharing misses Read an unmodified word in an invalidated block

Performance Study: Commercial Workload

14

16

18

Performance Study: Commercial Workload

Performance Study: Commercial Workload

Directory Protocols

- Snooping schemes require communication among all caches on every cache miss
 - Limits scalability
 - Another approach: Use centralized directory to keep track of every block
 Which caches have each block
 Dirty status of each block
- Implement in shared L3 cache
 - Keep bit vector of size = # cores for each block in L3
 - Not scalable beyond shared L3

Directory Protocols

Alternative approach: . Distribute memory

19

21

23

Directory Protocols

- For each block, maintain state:
 - Shared
 - · One or more nodes have the block cached, value in memory is up-to-date • Set of node IDs
 - Uncached
 - Modified
 - Exactly one node has a copy of the cache block, value in memory is out-of-date
 - Owner node ID
- · Directory maintains block states and sends invalidation messages

Messages

Message type	Source	Destination	Message contents	Function of this message
Read miss	Local cache	Home directory	P, A	Node P has a read miss at address A; request data and make P a read sharer.
Write miss	Local cache	Home directory	P, A	Node P has a write miss at address A; request data and make P the exclusive owner.
Invalidate	Local cache	Home directory	А	Request to send invalidates to all remote caches that are caching the block at address A.
Invalidate	Home directory	Remote cache	А	Invalidate a shared copy of data at address A.
Fetch	Home directory	Remote cache	А	Fetch the block at address A and send it to its home directory; change the state of A in the remote cache to shared.
Fetch/ invalidate	Home directory	Remote cache	А	Fetch the block at address A and send it to its home directory; invalidate the block in the cache.
Data value reply	Home directory	Local cache	D	Return a data value from the home memory.
Data write- back	Remote	Home directory	A, D	Write back a data value for address A.

Directory Protocols

Directory Protocols

• For uncached block:

- Read miss

- Requesting node is sent the requested data and is made the only sharing node, block is now shared
- Write miss
 - The requesting node is sent the requested data and becomes the sharing node, block is now exclusive

· For shared block:

- Read miss
- The requesting node is sent the requested data from memory, node is added to sharing set - Write miss
 - The requesting node is sent the value, all nodes in the sharing set are sent invalidate messages, sharing set only contains requesting node, block is now exclusive

22

Directory Protocols

- For exclusive block:
 - Read miss
 - The owner is sent a data fetch message, block becomes shared, owner sends data to the directory. data written back to memory, sharers set contains old owner and requestor
 - Data write back
 - · Block becomes uncached, sharer set is empty Write miss
 - Message is sent to old owner to invalidate and send the value to the directory, requestor becomes new owner, block remains exclusive

Synchronization

- Basic building blocks:
 - Atomic exchange
 - Swaps register with memory location
 - Test-and-set
 - Sets under condition
 - Fetch-and-increment
 - · Reads original value from memory and increments it in memory
 - Requires memory read and write in uninterruptable instruction
 - RISC-V: load reserved/store conditional • If the contents of the memory location specified by the load linked are changed before the store conditional to the same address, the store conditional fails

Implementing Locks

- Atomic exchange (EXCH):
 - mov x3,x4 lr x2,x1 sc x3,0(x1) bnez x3,try
 - :load reserved from ;store conditional ;branch store fails mov x4.x2 ;put load value in x4?

mov exchange value

• Atomic increment:

try:

try:

lr x2,x1 addi x3,x2,1 sc x3,0(x1) bnez x3.trv

;load reserved 0(x1) ;increment store conditional :branch store fails

Implementing Locks

- Lock (no cache coherence)
 - addi x2 R0 #1 lockit: EXCH x2,0(x1)bnez x2,locket

atomic exchange ;already locked?

26

28

• Lock (cache coherence):

lockit: ld x2,0(x1) bnez x2,locket addi x2,R0,#1 EXCH x2,0(x1) bnez x2.locket

;load of lock ;not available-spin ;load locked value ;swap ;branch if lock wasn't 0

Implementing Locks

· Advantage of this scheme: reduces memory traffic

Step	PO	P1	P2	Coherence state of lock at end of step	Bus/directory activity
1	Has lock	Begins spin, testing if lock =0	Begins spin, testing if lock=0	Shared	Cache misses for P1 and P2 satisfied in either order. Lock state becomes shared.
2	Set lock to 0	(Invalidate received)	(Invalidate received)	Exclusive (P0)	Write invalidate of lock variable from P0.
3		Cache miss	Cache miss	Shared	Bus/directory services P2 cache miss; write-back from P0; state shared.
4		(Waits while bus/ directory busy)	Lock=0 test succeeds	Shared	Cache miss for P2 satisfied.
5		Lock = 0	Executes swap, gets cache miss	Shared	Cache miss for P1 satisfied.
6		Executes swap, gets cache miss	Completes swap: returns 0 and sets lock = 1	Exclusive (P2)	Bus/directory services P2 cache miss; generates invalidate; lock is exclusive.
7		Swap completes and returns 1, and sets lock = 1	Enter critical section	Exclusive (P1)	Bus/directory services P1 cache miss; sends invalidate and generates write-back from P2.
8		Spins, testing if			None

Models of Memory Consistency

Processor 1:	Processor 2:
A=0	B=0
A=1	B=1
if (B==0)	if (A==0)

- · Should be impossible for both if-statements to be evaluated as true
- Delayed write invalidate?
- · Sequential consistency:
 - Result of execution should be the same as long as: · Accesses on each processor were kept in order · Accesses on different processors were arbitrarily interleaved

25

Implementing Locks

- To implement, delay completion of all memory accesses until all invalidations caused by the access are completed

 Reduces performance!
- Alternatives:
 - Program-enforced synchronization to force write on processor to occur before read on the other processor
 - Requires synchronization object for A and another for B
 - "Unlock" after write
 - "Lock" after read

Relaxed Consistency Models

```
• Rules:

-X \rightarrow Y

• Operation X must
```

Operation X must complete before operation Y is done
 Sequential consistency requires:

 R → W, R → R, W → R, W → W

- Relax W \rightarrow R

"Total store ordering"

```
    – Relax W → W
    • "Partial store order"
```

Relaxed Consistency Models

Model	Used in	Ordinar	y gs	Synchro	onization orderings	
Sequential consistency	Most machines as an optional mode	$\begin{array}{c} R \rightarrow R, \ R \rightarrow W, \\ W \rightarrow R, \ W \rightarrow W \\ \hline R \rightarrow R, \ R \rightarrow W, \\ W \rightarrow W \end{array}$		$\begin{split} & S \rightarrow W, S \rightarrow R, R \rightarrow S, W \rightarrow S, S \rightarrow S \\ & S \rightarrow W, S \rightarrow R, R \rightarrow S, W \rightarrow S, S \rightarrow S \end{split}$		
Total store order or processor consistency	IBMS/370, DEC VAX, SPARC					
Partial store order	SPARC	$R \rightarrow R, R \rightarrow W$		$S \rightarrow W, S \rightarrow R, R \rightarrow S, W \rightarrow S, S \rightarrow S$		
Weak ordering	PowerPC			$S \rightarrow W$,	$S \rightarrow R, R \rightarrow S, W \rightarrow S,$	S→S
Release consistency	MIPS, RISC V, Amv8, and C++ specifications	С,		$S_A \rightarrow W$ $S_A \rightarrow S_A$	$S_A \rightarrow R, R \rightarrow S_R, W \rightarrow S_R, W \rightarrow S_A \rightarrow S_R, S_R \rightarrow S_R \rightarrow S_R, S_R \rightarrow S_R \rightarrow S_R, S_R \rightarrow S_R $	S_R , $\rightarrow S_R$
Sequential consistency	TSO (total store order) or processor consistency	PSO (partial store order)	Weak orde	ring	Release consistency	
-A	- A	-A	- 4		= A	
	8		B-	l.	8 -	
acquire (5)	C = C = C = C = C = C = C = C = C = C = C =	C =	C -	5) (/ ()	C = D	
E -	E-	E-7	\E -		E = E =	

Relaxed Consistency Models

32

34

36

- · Consistency model is multiprocessor specific
- Programmers will often implement explicit synchronization
- Speculation gives much of the performance advantage of relaxed models with sequential consistency
 - Basic idea: if an invalidation arrives for a result that has not been committed, use speculation recovery

Fallacies and Pitfalls

- Measuring performance of multiprocessors by linear speedup versus execution time
- Amdahl's Law doesn't apply to parallel computers
- Linear speedups are needed to make multiprocessors cost-effective

 Doesn't consider cost of other system components
- Not developing the software to take advantage of, or optimize for, a multiprocessor architecture

31

[–] Relax R → W and R → R
"Weak ordering" and "release consistency"