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Introduction

• Thread-Level parallelism
– Have multiple program counters
– Uses MIMD model
– Targeted for tightly-coupled shared-memory 

multiprocessors

• For n processors, need n threads

• Amount of computation assigned to each thread 
= grain size
– Threads can be used for data-level parallelism, but 

the overheads may outweigh the benefit
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Types

• Symmetric multiprocessors 
(SMP)
– Small number of cores
– Share single memory with 

uniform memory latency

• Distributed shared memory 
(DSM)
– Memory distributed among 

processors
– Non-uniform memory 

access/latency (NUMA)
– Processors connected via 

direct (switched) and non-
direct (multi-hop) 
interconnection networks
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Cache Coherence

• Processors may see different values through 
their caches:
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Cache Coherence

• Coherence
– All reads by any processor must return the most 

recently written value
– Writes to the same location by any two processors 

are seen in the same order by all processors

• Consistency
– When a written value will be returned by a read
– If a processor writes location A followed by 

location B, any processor that sees the new value of 
B must also see the new value of A

5

Enforcing Coherence

• Coherent caches provide:
– Migration:  movement of data
– Replication:  multiple copies of data

• Cache coherence protocols
– Directory based

• Sharing status of each block kept in one location

– Snooping
• Each core tracks sharing status of each block
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Snoopy Coherence Protocols

• Write invalidate
– On write, invalidate all other copies
– Use bus itself to serialize

• Write cannot complete until bus access is obtained

• Write update
– On write, update all copies
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Snoopy Coherence Protocols

• Locating an item when a read miss occurs
– In write-back cache, the updated value must be sent 

to the requesting processor

• Cache lines marked as shared or 
exclusive/modified
– Only writes to shared lines need an invalidate 

broadcast
• After this, the line is marked as exclusive
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Snoopy Coherence Protocols
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Snoopy Coherence Protocols
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Snoopy Coherence Protocols

• Complications for the basic MSI protocol:
– Operations are not atomic

• E.g. detect miss, acquire bus, receive a response
• Creates possibility of deadlock and races
• One solution:  processor that sends invalidate can hold 

bus until other processors receive the invalidate

• Extensions:
– Add exclusive state to indicate clean block in only 

one cache (MESI protocol)
• Prevents needing to write invalidate on a write

– Owned state
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Coherence Protocols:  Extensions

• Shared memory bus 
and snooping 
bandwidth is 
bottleneck for scaling 
symmetric 
multiprocessors
– Duplicating tags
– Place directory in 

outermost cache
– Use crossbars or 

point-to-point 
networks with banked 
memory
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Coherence Protocols

• Every multicore with >8 processors uses an 
interconnect other than bus
– Makes it difficult to serialize events
– Write and upgrade misses are not atomic
– How can the processor know when all invalidates 

are complete?
– How can we resolve races when two processors 

write at the same time?
– Solution:  associate each block with a single bus
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Performance

• Coherence influences cache miss rate
– Coherence misses

• True sharing misses
– Write to shared block (transmission of invalidation)
– Read an invalidated block

• False sharing misses
– Read an unmodified word in an invalidated block
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Performance Study: Commercial Workload Performance Study: Commercial Workload
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Performance Study: Commercial Workload
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Directory Protocols

• Snooping schemes require communication 
among all caches on every cache miss
– Limits scalability
– Another approach:  Use centralized directory to 

keep track of every block
• Which caches have each block
• Dirty status of each block

• Implement in shared L3 cache
– Keep bit vector of size = # cores for each block in 

L3
– Not scalable beyond shared L3
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Directory Protocols

• Alternative approach:
– Distribute memory
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Directory Protocols

• For each block, maintain state:
– Shared

• One or more nodes have the block cached, value in 
memory is up-to-date

• Set of node IDs

– Uncached
– Modified

• Exactly one node has a copy of the cache block, value in 
memory is out-of-date

• Owner node ID

• Directory maintains block states and sends 
invalidation messages
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Messages
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Directory Protocols

23

Directory Protocols

• For uncached block:
– Read miss

• Requesting node is sent the requested data and is 
made the only sharing node, block is now shared

– Write miss
• The requesting node is sent the requested data and 

becomes the sharing node, block is now exclusive

• For shared block:
– Read miss

• The requesting node is sent the requested data from 
memory, node is added to sharing set

– Write miss
• The requesting node is sent the value, all nodes in the 

sharing set are sent invalidate messages, sharing set 
only contains requesting node, block is now exclusive
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Directory Protocols

• For exclusive block:
– Read miss

• The owner is sent a data fetch message, block 
becomes shared, owner sends data to the directory, 
data written back to memory, sharers set contains old 
owner and requestor

– Data write back
• Block becomes uncached, sharer set is empty

– Write miss
• Message is sent to old owner to invalidate and send 

the value to the directory, requestor becomes new 
owner, block remains exclusive
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Synchronization

• Basic building blocks:
– Atomic exchange

• Swaps register with memory location

– Test-and-set
• Sets under condition

– Fetch-and-increment
• Reads original value from memory and increments it in 

memory

– Requires memory read and write in uninterruptable 
instruction

– RISC-V:  load reserved/store conditional
• If the contents of the memory location specified by the 

load linked are changed before the store conditional to the 
same address, the store conditional fails
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Implementing Locks

• Atomic exchange (EXCH):
try: mov x3,x4 ;mov exchange value

lr x2,x1 ;load reserved from

sc x3,0(x1) ;store conditional

bnez x3,try ;branch store fails

mov x4,x2 ;put load value in x4?

• Atomic increment:
try: lr x2,x1 ;load reserved 0(x1)

addi x3,x2,1 ;increment

sc x3,0(x1) ;store conditional

bnez x3,try ;branch store fails
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Implementing Locks

• Lock (no cache coherence)
addi x2,R0,#1

lockit: EXCH x2,0(x1) ;atomic exchange

bnez x2,locket ;already locked?

• Lock (cache coherence):
lockit: ld x2,0(x1) ;load of lock

bnez x2,locket ;not available-spin

addi x2,R0,#1 ;load locked value

EXCH x2,0(x1) ;swap

bnez x2,locket ;branch if lock wasn’t 0
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Implementing Locks

• Advantage of this scheme:  reduces memory 
traffic
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Models of Memory Consistency

Processor 1: Processor 2:

A=0 B=0

… …

A=1 B=1

if (B==0) … if (A==0) …

• Should be impossible for both if-statements to be 

evaluated as true

• Delayed write invalidate?

• Sequential consistency:
– Result of execution should be the same as long as:

• Accesses on each processor were kept in order

• Accesses on different processors were arbitrarily interleaved
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Implementing Locks

• To implement, delay completion of all 
memory accesses until all invalidations 
caused by the access are completed
– Reduces performance!

• Alternatives:
– Program-enforced synchronization to force write 

on processor to occur before read on the other 
processor

• Requires synchronization object for A and another for 
B

– “Unlock” after write
– “Lock” after read
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Relaxed Consistency Models

• Rules:
– X → Y

• Operation X must complete before operation Y is done
• Sequential consistency requires:

– R → W, R → R, W → R, W → W

– Relax W → R
• “Total store ordering”

– Relax W → W
• “Partial store order”

– Relax R → W and R → R
• “Weak ordering” and “release consistency”
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Relaxed Consistency Models
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Relaxed Consistency Models

• Consistency model is multiprocessor specific

• Programmers will often implement explicit 
synchronization

• Speculation gives much of the performance 
advantage of relaxed models with sequential 
consistency
– Basic idea:  if an invalidation arrives for a result that 

has not been committed, use speculation recovery
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Fallacies and Pitfalls

• Measuring performance of multiprocessors by 
linear speedup versus execution time

• Amdahl’s Law doesn’t apply to parallel 
computers

• Linear speedups are needed to make 
multiprocessors cost-effective
– Doesn’t consider cost of other system components

• Not developing the software to take advantage 
of, or optimize for, a multiprocessor 
architecture

35 36


