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Introduction

• A summary of the five mainstream computing 

classes and their system characteristics:

2

Introduction

• Classes of Parallelism :
– Data-Level Parallelism (DLP) arises 

• because there are many data items that can be operated on 

at the same time.

– Task-Level Parallelism (TLP) arises 
• because tasks of work are created that can operate 

independently and largely in parallel.

– Flynn, M. J. (1966). Very high-speed computing systems. Proceedings of the 

IEEE, 54(12), 1901–1909. doi:10.1109/proc.1966.5273 

• Computer hardware in turn can exploit these 

two kinds of application parallelism in four 

major ways:
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Introduction

– Instruction-level parallelism exploits 
• DLP at modest levels with compiler help using ideas like 

pipelining and at medium levels using ideas like 
speculative execution.

– Vector architectures, Graphic Processor Units 
(GPUs), and multimedia instruction sets exploit 

• DLP by applying a single instruction to a collection of 
data in parallel.

– Thread-level parallelism exploits either 
• DLP or TLP in a tightly coupled hardware model that 

allows for interaction between parallel threads.

– Request-level parallelism exploits 
• parallelism among largely decoupled tasks specified by 

the programmer or the operating system.
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Introduction

• Classes of computers (interms of # of processors):
– Single Instruction stream, Single Data stream (SISD)

• This category is the uniprocessor. 

• The programmer thinks of it as the standard sequential 

computer, but it can exploit ILP.

– Single Instruction stream, Multiple Data streams 

(SIMD)
• The same instruction is executed by multiple processors using 

different data streams. 

• SIMD computers exploit DLP by applying the same operations 

to multiple items of data in parallel. 

• Each processor has its own data memory (hence, the MD of 

SIMD), but there is a single instruction memory and control

processor, which fetches and dispatches instructions. 
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Introduction

– Multiple Instruction streams, Single Data stream 

(MISD)
• No commercial multiprocessor of this type has been built 

to date, but it rounds out this simple classification.

– Multiple Instruction streams, Multiple Data streams 

(MIMD)
• Each processor fetches its own instructions and operates 

on its own data, and it targets TLP. 

• In general, MIMD is more flexible than SIMD and thus 

more generally applicable, but it is inherently more 

expensive than SIMD. 
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SIMD Parallelism

• A question for the SIMD architecture has 

always been just how wide a set of applications 

has significant DLP.

• SIMD architectures can exploit significant DLP

for:
– Matrix-oriented scientific computing

– Media-oriented image and sound processing

– Machine learning algorithms

7

SIMD Parallelism

• SIMD is more energy efficient than Multiple

Instruction Multiple Data (MIMD)
– MIMD needs to fetch one instruction per data 

operation

– In SIMD, a single instruction can launch many data 

operations

– Makes SIMD attractive for personal mobile devices

as well as for servers
• SIMD allows programmer to continue to think 

sequentially yet achieves parallel speedup by having 

parallel data operations
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SIMD Parallelism

• There are three variations of SIMD
– Vector architectures

• Extends pipelined execution of many data operations. 
• Easier to understand and to compile, but they were considered

too expensive for microprocessors until recently. 
– Part of that expense was in transistors, and part was in the cost of 

sufficient dynamic random access memory (DRAM) bandwidth, 
given the widespread reliance on caches to meet memory 
performance demands on conventional microprocessors.

– Multimedia SIMD instruction set extensions
• found in most instruction set architectures that support 

multimedia applications. 
– For x86 architectures, the SIMD instruction extensions started with 

the MMX (multimedia extensions) in 1996, which were followed by 
several SSE (streaming SIMD extensions) versions in the next 
decade, and they continue until this day with AVX (advanced vector
extensions). 

– To get the highest computation rate from an x86 computer, you 
often need to use these SIMD instructions, especially for floating-
point programs.
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SIMD Parallelism

– Graphics Processing Units (GPUs)
• comes from the graphics accelerator community, offering 

higher potential performance than is found in traditional 
multicore computers today. 

• Although GPUs share features with vector architectures, 
they have their own distinguishing characteristics, in part 
because of the ecosystem in which they evolved. 

• This environment has a system processor and system 
memory in addition to the GPU and its graphics memory. 
In fact, to recognize those distinctions, the GPU 
community refers to this type of architecture as 
heterogeneous.
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SIMD vs. MIMD

• For x86 
processors:
– Expect two 

additional cores 
per chip per year

– SIMD width to 
double every four 
years

– Potential speedup 
from SIMD to be 
twice that from 
MIMD!
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Vector Supercomputers

• In 70-80s, Supercomputer  Vector machine
• Definition of supercomputer

– Fastest machine in the world at given task
– A device to turn a compute-bound problem into an 

I/O bound problem
– CDC6600 (Cray, 1964) is regarded as the first 

supercomputer

• Vector supercomputers (epitomized by Cray 1, 
1976)
– Scalar unit + vector extensions

• Vector registers, vector instructions
• Vector loads/stores
• Highly pipelined functional units

12
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Cray-1 (1976)
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Vector Memory Memory vs. Vector Register Machines

• Vector memory-memory instructions hold all vector operands in 

main memory
– The first vector machines, CDC Star 100 (1973) and TI ASC (1971), 

were memory-memory machines

• Cray 1 (1976) was first vector register machine
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Vector Memory Memory vs. Vector Register Machines

• Vector memory-memory architectures (VMMA) 
require greater main memory bandwidth, why?
– All operands must be read in and out of memory

• VMMAs make it difficult to overlap execution of 
multiple vector operations, why?
– Must check dependencies on memory addresses

• VMMAs incur greater startup latency
– Scalar code was faster on CDC Star-100 for vectors < 

100 elements
– For Cray-1, vector/scalar breakeven point was around 2 

elements
• Apart from CDC follow ons (Cyber-205, ETA-10) all major 

vector machines since Cray-1 have had vector register 
architectures

15

Vector Architectures

• Basic idea:
– Read sets of data elements into vector registers
– Operate on data in those register files
– Disperse the results back into memory

• Vector loads/stores are deeply pipelined
– Program pays the long memory latency only once per 

vector load/store vs. latency for each element for regular 
load/store.

• Register files are controlled by compiler
– Register files act as compiler controlled buffers
– Used to hide memory latency
– Leverage memory bandwidth

• Kozyrakis, C., & Patterson, D. (n.d.). Vector vs. superscalar and VLIW 
architectures for embedded multimedia benchmarks. 35th Annual IEEE/ACM 
International Symposium on Microarchitecture, 2002. (MICRO-35). Proceedings. 
doi:10.1109/micro.2002.1176257
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Vector Processing Model

• Vector processors have high-level operations 

that work on linear arrays of numbers: vectors
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RISC-V Vector (RVV) ISA Example: RV64V

• Loosely based on Cray-1
– Vector registers

• 8 vector registers in this example

• Each register holds a 32-element, 64 bits/element vector

• Register file has 16 read ports and 8 writeports

– Vector functional units
• 5 FUs in this example

• Fully pipelined

• Data and control hazards are 

detected

– Vector load-store unit
• Fully pipelined

• Words move between registers 

and memory

• One word per clock cycle after 

initial latency

– Scalar registers
• 31 general-purpose registers

• 32 FP registers point registers (RV64V)

18
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Vector Programming Model
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Vector Instruction Set Advantages

• Compact
– One short instruction encodes N operations

• Expressive
– tells hardware that these N operations are independent

– N operations use the same functional unit

– N operations access disjoint registers

– N operations access registers in the same pattern as previous 

instruction

– N operations access a contiguous block of memory (unit 

stride load/store)

– N operations access memory in a known pattern (stridden 

load/store)

• Scalable
– Can run same object code on more parallel pipelines or lanes

20

The RV64V Instructions

21

The RV64V Instructions
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The RV64V vector instructions

• All use the R instruction format. 

• Each vector operation with two operands is 

shown with both operands being vector (.vv) 

• There are also versions where 

– the second operand is a scalar register (.vs) 

– the first operand is a scalar register and the second is 

a vector register (.sv). 
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The RV64V vector instructions

• Operate on many elements concurrently

– Allows use of slow but wide execution units

• High performance, lower power

• Independence of elements within a vector 

instruction

– Allows scaling of functional units without costly 

dependencechecks

• Flexible

– 32 64-bit / 128 16-bit / 256 8-bit

– Matches the need of multimedia (8bit), scientific 

applications that require high precision

24
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How Vector Processors Work: An Example

• We can best understand a vector processor by 

looking at a vector loop for RV64V.

• Let’s take a typical vector problem

Y = a × X + Y
– X and Y are vectors, initially resident in memory, 

and a is a scalar. 
• This problem is the SAXPY (single-precision a X plus Y) 

or DAXPY (double precision a X plus Y) loop that forms 

the inner loop of the Linpack benchmark
– (Dongarra et al., 2003, https://doi.org/10.1002/cpe.728). 

• Linpack is a collection of linear algebra routines, and the 

Linpack benchmark consists of routines for performing

Gaussian elimination. 
25

RV64V Example: DAXPY Loop

• Show the code for RV64G and RV64V for the 

DAXPY loop. 
– for (i=0; i<32; i++)

Y[i] = a  X[i] + Y[i]
• adds a scalar multiple of a double precision vector to 

another double precision vector

• For this example, assume that 
– X and Y have 32 elements 

– the number of elements (i.e. Length) of the vectors 

matches the length of the vector operation.

– the starting addresses of X and Y are in x5 and x6

26

Answer

• Here is the RISC-V code:

fld f0,a # Load scalar a

addi x28 , x5, #256 # Last address to load

Loop: fld f1 , 0(x5) # Load X[i]

fmul.d f1 , f1 , f0 # a  X[i]

fld f2 , 0(x6) # Load Y[i]

fadd.d f2 , f2 , f1 # a  X[i] + Y[i]

fsd f2 , 0(x6) # Store into Y[i]

addi x5 ,x5 , #8 # Increment index to X

addi x6 , x6 , #8 # Increment index to Y

bne x28 , x5 , Loop # Check if done
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Answer

• Here is the RV64V code for DAXPY:

vsetdcfg 4*FP64 # Enable 4 DP FP vector registers

fld f0 , a # Load scalar a

vld v0 , x5 # Load vector X

vmul v1 , v0 , f0 # Vector-scalar multiply

vld v2 , x6 # Load vector Y

vadd v3 , v1 , v2 # Vector-vector add

vst v3 , x6 # Store the sum

vdisable # Disable vector registers

– Note that the assembler determines which version of the vector operations to 

generate.
• Because the multiply has a scalar operand, it generates vmul.vs, whereas the add 

doesn’t, so it generates vadd.vv.

– The initial instruction configures the first four vector registers to hold 64-bit

floating-point data. 

– The last instruction disables all vector registers.

28

Answer

RV64G Code RV64V Code

29

Answer

• 8 RV64V vector instructions vs. 258 RV64G scalar 

instructions

• In RV64G Code
– Fadd.d must wait for fmul.d

– fsd must wait for fadd.d

– Lots of pipeline stalls are necessary for deeply pipelined 

architecture.

• In RV64V Code
– Stall once for the first vector element, subsequent elements will 

flow smoothly down the pipeline.

– Pipeline stalls are required only once per vector instruction, rather

than once per vector element

• Pipeline stall frequency on RV64G will be about 32 higher 

than it is on RV64V.

30
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Remarks

• The most dramatic difference between the scalar 
and vector code is that the vector processor greatly 
reduces the dynamic instruction bandwidth, 
executing only 8 instructions versus 258 for 
RV64G. 

• When the compiler produces vector instructions for 
such a sequence, and the resulting code spends
much of its time running in vector mode, 
– the code is said to be vectorized or vectorizable.

• Loops can be vectorized when they do not have 
dependences between iterations of a loop, 
– which are called loop-carried dependences

31

Example

• A common use of multiply-accumulate 

operations is to multiply using narrow data and 

to accumulate at a wider size to increase the 

accuracy of a sum of products.

• Show how the preceding code would change if 

X and a were single-precision instead of a 

double-precision floating point. 

• Next, show the changes to this code if we 

switch X, Y, and a from floating-point type to 

integers.
32

Answer

• The same code works with two small changes:
– The configuration instruction includes one single-

precision vector, 

– the scalar load is now single-precision:

vsetdcfg 1*FP32 , 3*FP64 # 1 32b, 3 64b vregs

flw f0 , a # Load scalar a

vld v0 , x5 # Load vector X

vmul v1 , v0 , f0 # Vector-scalar mult

vld v2 , x6 # Load vector Y

vadd v3 , v1 , v2 # Vector-vector add

vst v3 , x6 # Store the sum

vdisable # Disable vector regs

33

Answer

– RV64V hardware will implicitly perform a conversion from 

the single-precision to the double-precision in this setup.

– We must use an integer load instruction and integer register 

to hold the scalar value:

vsetdcfg 1*X32,3*X64 # 1 32b, 3 64b int reg

lw x7 , a # Load scalar a

vld v0 , x5 # Load vector X

vmul v1 , v0 , x7 # Vector-scalar mult

vld v2 , x6 # Load vector Y

vadd v3 , v1 , v2 # Vector-vector add

vst v3 , x6 # Store the sum

vdisable # Disable vector regs

34

Challenges of Vector Instructions

• Start up time
– Application and architecture must support long 

vectors. 
• Otherwise, they will run out of instructions requiring ILP

• Long latency of vector functional unit
– Assume the same as Cray-1

• Floating point add => 6 clock cycles

• Floating point multiply => 7 clock cycles

• Floating point divide => 20 clock cycles

• Vector load => 12 clock cycles

35

Vector Execution Time

• Execution time of a sequence of vector operations 
depends on three factors:
– Length of operand vectors
– Structural hazards among the operations
– Data dependencies

• Modern vector computers have vector functional units 
with multiple parallel pipelines that can produce two or 
more results per clock cycle

• RV64V functional units consume one element per clock 
cycle for individual operations
– Thus the execution time in clock cycles for a single vector 

instruction is approximately the vector length

• Efficient way to estimate the execution time: 
– Convoy and chime

36
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Vector Instruction Parallelism

• Can overlap execution of multiple vector instructions
– example machine has 32 elements per vector register and 8 

lanes

– Complete 24 operations/cycle while issuing 1 short 

instruction/cycle

37

Convoy

• Convoy
– Set of vector instructions that could potentially execute together

• Instructions in a convoy must not contain any structural 

hazards;

– if such hazards were present, the instructions would need to be 

serialized and initiated in different convoys. 
• Thus the vld and the following vmul in the preceding example can be 

in the same convoy. 

• One can estimate performance of a section of code by 

counting the number of convoys. 

• It is assumed that a convoy of instructions must complete 

execution before any other instructions (scalar or vector) can 

begin execution.

38

Vector Chaining

• Sequences with read-after-write (RAW) dependency hazards 

should be in separate convoy. 
– However, chaining allows them to be in the same convoy

• Chaining

– Allows a vector operation to start as soon as the individual 

elements of its vector source operand become available
• the results from the first functional unit in the chain are forwarded to 

the second functional unit

• Chaining is implemented by allowing the processor to read and 

write a particular vector register at the same time

• Recent implementations use flexible chaining, which allows a 

vector instruction to chain to essentially any other active vector 

instruction, assuming that we don’t generate a structural hazard. 

• All modern vector architectures support flexible chaining

39

Vector Chaining

• Vector version of register bypassing
– Allows a vector operation to start as soon as the individual 

elements of its vector source operand become available

40

Advantages of Vector Chaining

• Without chaining, 
– must wait for last element of result to be written before 

starting dependent instruction

• With chaining, 
– can start dependent instruction as soon as first result appears

41

Chimes

• To turn convoys into execution time, we need a 
metric to estimate the length of a convoy.

• Chime
– Unit of time taken to execute one convoy

• a vector sequence that consists of m convoys
executes in m chimes;
– for a vector length of n, for RV64V implementation, 

this is approximately m×n clock cycles.

• Chime approximation ignores some processor-
specific overheads, many of which are 
dependent on vector length. 
– Therefore measuring time in chimes is a better 

approximation for long vectors than for short ones.
42
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Execution Time Example

• Show how the following code sequence lays out in 
convoys, assuming a single copy of each vector 
functional unit:

vld v0 , x5 # Load vector X
vmul v1 , v0 , f0 # Vector-scalar multiply
vld v2 , x6 # Load vector Y
vadd v3 , v1 , v2 # Vector-vector add
vst v3 , x6 # Store the sum

– How many chimes will this vector sequence take? 
– How many cycles per FLOP (floating-point operation) 

are needed, ignoring vector instruction issue overhead?

43

Answer

• 3 Convoys:
– 1st convoy starts with the 1st vld instruction. 

• vmul is dependent on the 1st vld, 
– but chaining allows it to be in the same convoy.

– 2nd vld instruction must be in a separate convoy 

because there is a structural hazard on the load/store 

unit for the prior vld instruction. 
• vadd is dependent on the 2nd vld, 

– but it can be in the same convoy via chaining.

– vst has a structural hazard on the vld in the 2nd

convoy, 
• so it must go in the third convoy. 

44

Answer

• This analysis leads to the following layout of vector

instructions into convoys:
1 vld vmul

2 vld vadd

3 vst

• The sequence requires 3 convoys. 

• Because the sequence takes 3 chimes and there are 2 fp

operations per result, the number of cycles per FLOP is

1.5

• This example shows that the chime approximation is 

reasonably accurate for long vectors. 
– For example, for 32-element vectors, the time in chimes is 3, 

so the sequence would take about 32×3 or 96 clock cycles.

45

Challenges

• Most important source of overhead ignored by the 

chime model is vector start-up time, 
– which is the latency in clock cycles until the pipeline is 

full. 

• Start-up time is principally determined by the 

pipelining latency of the vector functional unit. 
– For RV64V, same pipeline depths as the Cray-1 will be 

assumed. 
• All functional units are fully pipelined. 

• Pipeline depths are 
– 6 clock cycles for fp add, 

– 7 for fp multiply, 

– 20 for fp divide,

– 12 for vector load.

46

Improvements

• Optimizations that either improve the performance 

or increase the types of programs that can run well

on vector architectures:

• How can a vector processor execute a single vector 

faster than one element per clock cycle? 
– Multiple elements per clock cycle improve performance.

• How does a vector processor handle programs 

where the vector lengths are not the same as the 

maximum vector length (mvl)? 
– Because most application vectors don’t match the 

architecture vector length, we need an efficient solution 

to this common case.
47

Improvements

• What happens when there is an IF statement inside the code to 

be vectorized?
– More code can vectorize if we can efficiently handle conditional 

statements.

• What does a vector processor need from the memory system? 
– Without sufficient memory bandwidth, vector execution can be futile.

• How does a vector processor handle multiple dimensional 

matrices? 
– This popular data structure must vectorize for vector architectures to do 

well.

• How does a vector processor handle sparse matrices? 
– This popular data structure must vectorize also.

• How do you program a vector computer? 
– Architectural innovations that are a mismatch to programming languages 

and their compilers may not get widespread use.

48
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Multiple Lanes

• A critical advantage of a vector instruction set 
– allows software to pass a large amount of parallel work to 

hardware using only a single short instruction.
• One vector instruction can include scores of independent operations 

yet be encoded in the same number of bits as a conventional scalar 

instruction. 

• The parallel semantics of a vector instruction allow an 

implementation to execute these elemental operations 

using a deeply pipelined functional unit, 
– an array of parallel functional units; or a combination of 

parallel and pipelined functional units. 

• Next figure illustrates how to improve vector 

performance by using parallel pipelines to execute a 

vector add instruction.
49

Multiple Lanes
• Using multiple functional units to improve the performance of a single vector add 

instruction, C=A+B. 
• The vector processor 

(A) on the left has a 
single add pipeline and 
can complete one 
addition per clock
cycle. 

• The vector processor 
(B) on the right has 
four add pipelines and 
can complete four 
additions per clock 
cycle.

• The elements within a 
single vector add 
instruction are 
interleaved across the 
four pipelines. 

• The set of elements that
move through the 
pipelines together is 
termed an element 
group.

50

Multiple Lanes

• In RV64V instruction set, all vector arithmetic 
instructions only allow element N of one vector 
register to take part in operations with element N
from other vector registers. 
– This dramatically simplifies the design of a highly 

parallel vector unit, which can be structured as multiple 
parallel lanes.

– As with a traffic highway, we can increase the peak 
throughput of a vector unit by adding more lanes. 

• Next figure shows the structure of a four-lane 
vector unit.
– Thus going to four lanes from one lane reduces the 

number of clocks for a chime from 32 to 8.

51

Multiple Lanes

• Vector register 

memory is divided 

across the lanes, 

with each lane 

holding every fourth 

element of each

vector register. 

• Three vector 

functional units: 
– an FP add, 

– an FP multiply,

– a load-store unit. 

• Each of the vector 

arithmetic units 

contains four 

execution pipelines,

one per lane, which 

act in concert to 

complete a single 

vector instruction.

52

Vector-Length Registers: 

Handling Loops Not Equal to 32

• A vector register processor has a natural vector 

length determined by the maximum vector 

length (mvl) (32 in the example above).

• In a real program, the length of a particular 

vector operation is unknown at compile time. 
– In fact, a single piece of code may require different 

vector lengths. 

• For example, consider the following code:

for (i = 0; i < n; i = i + 1)

Y[i] = a * X[i] + Y[i];

53

Vector-Length Registers

• Solution to these problems is to add a vector-

length register (vl). 
– The vl controls the length of any vector operation, 

including a vector load or store. 
• The value in the vl cannot be greater than the mvl.

• This solves the problem as long as the real length is 

less than or equal to the maximum vector length (mvl). 

• This parameter means the length of vector registers can

grow in later computer generations without changing 

the instruction set.

54
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Vector Length Register

• RV64V code for vector DAXPY for any value of n.

vsetdcfg 2 DP FP # Enable 2 64b Fl.Pt. registers

fld f0 , a # Load scalar a

loop: setvl t0 ,a0 # vl = t0 = min(mvl,n)

vld v0 , x5 # Load vector X

slli t1 , t0 , 3 # t1 = vl * 8 (in bytes)

add x5 , x 5, t1 # Increment pointer to X by vl*8

vmul v0 , v0 , f0 # Vector-scalar mult

vld v1 , x6 # Load vector Y

vadd v1 , v0 , v1 # Vector-vector add

sub a0 , a0 , t0 # n -= vl (t0)

vst v1 , x6 # Store the sum into Y

add x6 , x6 , t1 # Increment pointer to Y by vl*8

bnez a0 , loop # Repeat if n != 0

vdisable # Disable vector regs}

55

Predicate Registers: 

Handling IF Statements in Vector Loops

• Main reasons for lower levels of vectorization:
– presence of conditionals (IF statements) inside loops 
– use of sparse matrices 

• Programs that contain IF statements in loops 
cannot be run in vector mode because 
– IF statements introduce control dependences into a 

loop. 

• Consider the following loop written in C:
for (i = 0; i < 64; i = i + 1)

if (X[i] != 0)
X[i] = X[i] – Y[i];

– This loop cannot normally be vectorized because of 
the conditional execution of the body

56

Predicate Registers: 

Handling IF Statements in Vector Loops

• However, if the inner loop could be run for the iterations for 

which X[i]  0, then the subtraction could be vectorized.
– The common extension for this capability is vector-mask control. 

• In RV64V, predicate registers hold the mask and essentially provide conditional 

execution of each element operation in a vector instruction.

• Predicate registers are configured and can be disabled. 
– Enabling a predicate register initializes it to all 1 s, 

– meaning that subsequent vector instructions operate on all vector elements. 

• Following code can be used for the previous loop, assuming that the starting addresses 

of X and Y are in x5 and x6, respectively:

vsetdcfg 2*FP64 # Enable 2 64b FP vector regs

vsetpcfgi 1 # Enable 1 predicate register

vld v0 , x5 # Load vector X into v0

vld v1 , x6 # Load vector Y into v1

fmv.d.x f0 , x0 # Put (FP) zero into f0

vpne p0 , v0 , f0 # Set p0(i) to 1 if v0(i)!=f0

vsub v0 , v0 , v1 # Subtract under vector mask

vst v0 , x5 # Store the result in X

vdisable # Disable vector registers

vpdisable # Disable predicate registers

57

Predicate Registers

• Using a vector-mask register does have overhead. 
– With scalar architectures, conditionally executed 

instructions still require execution time when the 
condition is not satisfied. 

• Elimination of a branch and the associated control 
dependences can make a conditional instruction 
faster even if it sometimes does useless work. 

• Vector instructions executed with a vector mask 
still take the same execution time, even for the 
elements where the mask is zero. 
– Despite a significant number of zeros in the mask, using

vector-mask control may still be significantly faster than 
using scalar mode.

58

Memory Banks: 

Supplying Bandwidth for Vector Load/Store Units

• Behavior of load/store vector unit is 
significantly more complicated than that of the 
arithmetic functional units. 

• Start-up time for a load is the time to get the 
first word from memory into a register. 
– If the rest of the vector can be supplied without

stalling, then the vector initiation rate is equal to the 
rate at which new words are fetched or stored. 

• Unlike simpler functional units, the initiation 
rate may not necessarily be 1 clock cycle 
because memory bank stalls can reduce 
effective throughput.

59

Memory Banks

• Memory system must be designed to support 

high bandwidth for vector loads and stores

• Spreading accesses across multiple independent 

memory banks usually delivers the desired rate

• To maintain an initiation rate of one word 

fetched or stored per clock cycle, the memory 

system must be capable of producing or 

accepting this much data.

• Having significant numbers of banks is useful 

for dealing with vector loads or stores that 

access rows or columns of data.
60
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Memory Banks

• Most vector processors use memory banks, which allow 
several independent accesses rather than simple memory 
interleaving for three reasons:
– Many vector computers support many loads or stores per clock 

cycle, and the memory bank cycle time is usually several times 
larger than the processor cycle time. 

• To support simultaneous accesses from multiple loads or stores, the 
memory system needs multiple banks and needs to be able to control the 
addresses to the banks independently.

– Most vector processors support the ability to load or store data 
words that are not sequential. 

• In such cases, independent bank addressing, rather than interleaving, is 
required.

– Most vector computers support multiple processors sharing the 
same memory system, so each processor will be generating its 
own separate stream of addresses. 

• In combination, these features lead to the desire for a large 
number of independent memory banks, as the following 
example shows.
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Example (Cray T90)

• Cray T932 has 32 processors, each capable of 
generating 4 loads and 2 stores per clock cycle. 
– Processor clock cycle is 2.167 ns, 
– Cycle time of the SRAMs used for the memory system is 15 

ns.

• Calculate the minimum number of memory banks 
required to allow all processors to run at the full 
memory bandwidth.

• Answer
– The maximum number of memory references each cycle: 

• 32 processors × 6 references per processor = 192

– Each SRAM bank is busy for 15/2.167 = 6.92 clock cycles, 
• which is rounded up to 7 processor clock cycles. 

– Therefore we require a minimum of 192×7 = 1344 memory 
banks!
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Stride: 

Handling Multidimensional Arrays in Vector Architectures

• Load/store units move groups of data between vector 

registers and memory

• The distance separating elements to be gathered into a single 

vector register is called the stride

• Three types of stride addressing
– Unit stride

• Contiguous (sequential) block of information in memory

• Fastest : always possible to optimize this

– Non unit (constant) stride
• Harder to optimize memory system for all possible strides

• Prime number of data banks makes it easier to support different strides at 

full bandwidth

– Indexed (gather scatter)
• Vector equivalent of register indirect

• Good for sparse arrays of data

• Increases number of programs that vectorize
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Stride: 

Handling Multidimensional Arrays in Vector Architectures

• The position in memory of adjacent elements in 

a vector may not be sequential.

• Consider this straightforward code for matrix 

multiply in C:

for (i = 0; i < 100; i = i + 1)

for (j = 0; j < 100; j = j + 1) {

A[i][j] = 0.0;

for (k = 0; k < 100; k = k + 1)

A[i][j] = A[i][j] + B[i][k] * D[k][j];

}
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Stride: 

Handling Multidimensional Arrays in Vector Architectures

• We could vectorize the multiplication of each row 
of B with each column of D and strip-mine the 
inner loop with k as the index variable.
– To do so, we must consider how to address adjacent 

elements in B and adjacent elements in D. 
• When an array is allocated memory, it is linearized and must 

be laid out in either row-major order (as in C) or column-major 
order (as in Fortran). 

• This linearization means that either the elements in the row or 
the elements in the column are not adjacent in memory. 

– For example, the preceding C code allocates in row-
major order, so the elements of D that are accessed by 
iterations in the inner loop are separated by the row size 
times 8 (the number of bytes per entry) for a total of 800
bytes
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Stride: 

Handling Multidimensional Arrays in Vector Architectures

• This distance separating elements to be gathered 

into a single vector register is called the stride. 
– In the example, matrix D has a stride of 100 double 

words (800 bytes), and matrix B would have a stride of 

1 double word (8 bytes). 

• For column-major order, which is used by Fortran, 

the strides would be reversed. 
– Matrix D would have a stride of 1, while matrix B

would have a stride of 100

• Thus, without reordering the loops, the compiler 

can’t hide the long distances between successive 

elements for both B and D.
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Stride: 

Handling Multidimensional Arrays in Vector Architectures

• Once a vector is loaded into a vector register, it 

acts as if it had logically adjacent elements. 

• Thus a vector processor can handle strides 

greater than one, called nonunit strides, using 

only vector load and vector store operations 

with stride capability. 

– This ability to access nonsequential memory 

locations and to reshape them into a dense structure 

is one of the major advantages of a vector

architecture.
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Stride: 

Handling Multidimensional Arrays in Vector Architectures

• Supporting strides greater than one complicates the 

memory system. 

• Once non-unit strides are introduced, it becomes possible 

to request accesses from the same bank frequently. 

• When multiple accesses contend for a bank, a memory 

bank conflict occurs, thereby stalling one access. 

• A bank conflict and thus a stall will occur if

Number of banks

Least common multiple (Stride, Number of banks)
< Bank busy time
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Example

• Suppose we have 8 memory banks with a bank busy time of 6

clocks and a total memory latency of 12 cycles. 

• How long will it take to complete a 64-element vector load with 

a stride of 1? With a stride of 32?
• Answer

– Because the number of banks is larger than the bank busy time, for 

a stride of 1, the load will take 12+64=76 clock cycles, or
• 1.2 clock cycles per element. 

– The worst possible stride is a value that is a multiple of the 

number of memory banks, as in this case with a stride of 32 and 8 

memory banks. 

– Every access to memory (after the first one) will collide with the 

previous access and will have to wait for the 6-clock-cycle bank 

busy time. 

– The total time will be 12+1+6 * 63=391 clock cycles, or
• 6.1 clock cycles per element, slowing it down by a factor of 5!
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Gather-Scatter: 

Handling Sparse Matrices in Vector Architectures

• Important to have techniques to allow programs 

with sparse matrices to execute in vector mode.
– In a sparse matrix, the elements of a vector are usually 

stored in some compacted form and then accessed 

indirectly. 

• Assuming a simplified sparse structure, we might 

see code that looks like this:
for (i = 0; i < n; i = i + 1)

A[K[i]] = A[K[i]] + C[M[i]];

• This code implements a sparse vector sum on the 

arrays A and C, using index vectors K and M to 

designate the nonzero elements of A and C.
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Gather-Scatter: 

Handling Sparse Matrices in Vector Architectures

• The primary mechanism for supporting sparse matrices is 

gather-scatter operations using index vectors. 
– Goal is to support moving between a compressed 

representation and normal representation of a sparse matrix. 

• A gather operation takes an index vector and fetches the 

vector whose elements are at the addresses given by 

adding a base address to the offsets given in the index 

vector. 
– The result is a dense vector in a vector register.

• After these elements are operated on in a dense form, the sparse 
vector can be stored in an expanded form by a scatter store, using the 
same index vector. 

• Hardware support for such operations is called gather-
scatter, and it appears on nearly all modern vector 
processors.
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Gather-Scatter: 

Handling Sparse Matrices in Vector Architectures

• The RV64V instructions are vldi (load vector indexed or gather) and 

vsti (store vector indexed or scatter). 
– For example, if x5, x6, x7, and x28 contain the starting addresses of the vectors 

in the previous sequence, we can code the inner loop with vector instructions 

such as:

vsetdcfg 4*FP64 # 4 64b FP vector registers

vld v0 , x7 # Load K[ ]

vldx v1 , x5 , v0) # Load A[K[ ]]

vld v2 , x28 # Load M[ ]

vldi v3 , x6 , v2) # Load C[M[ ]]

vadd v1 , v1 , v3 # Add them

vstx v1 , x5 , v0) # Store A[K[ ]]

vdisable # Disable vector registers

• This technique allows code with sparse matrices to run in vector 

mode. 

• A simple vectorizing compiler could not automatically vectorize the 

preceding source code because the compiler would not know that the 

elements of K are distinct values, and thus that no dependences exist.

72



13

SIMD Instruction Set Extensions for Multimedia

• SIMD MMX started with observation that 
– many media applications operate on narrower data types 

than the 32-bit processors were optimized for.

• Graphics systems would use 
– 8 bits to represent each of the three primary colors plus 

8 bits for transparency. 

• Audio samples are usually represented with 8 or 16 
bits. 

• By partitioning the carry chains within, say, a 256-
bit adder, a processor could perform simultaneous 
operations on short vectors of 32 8-bit operands, 16
16-bit operands, 8 32-bit operands, or 4 64-bit
operands. 
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SIMD Instruction Set Extensions for Multimedia

• Typical multimedia SIMD instructions

• In contrast to vector architectures, SIMD

extensions have three major omissions, which 

make it harder for the compiler to generate 

SIMD code and increase the difficulty of 

programming in SIMD assembly language.
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SIMD Instruction Set Extensions for Multimedia

– MM SIMD extensions fix the number of data operands 

in the opcode,
• which has led to the addition of hundreds of instructions in the 

MMX, SSE, and AVX extensions of the x86 architecture.

• Vector architectures have a vector-length register that specifies 

the number of operands for the current operation.

– MM SIMD did not offer the more sophisticated

addressing modes of vector architectures (strided

accesses and gather-scatter accesses). 
• These features increase the number of programs that a vector 

compiler can successfully vectorize

– MM SIMD usually did not offer the mask registers to 

support conditional execution of elements as in vector 

architectures
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SIMD Instruction Set Extensions for Multimedia

• For the x86 architecture, 
– MMX instructions added in 1996 repurposed the 64-bit 

floating-point registers, 
• so the basic instructions could perform 8 8-bit operations or 4

16-bit operations simultaneously.

– Streaming SIMD Extensions (SSE) successor in 1999
added 16 separate registers (XMM registers) that were 
128 bits wide, 

• so now instructions could simultaneously perform 16 8-bit
operations, 8 16-bit operations, or 4 32-bit operations.

– Advanced Vector Extensions (AVX), added in 2010, 
doubled the width of the registers to 256 bits (YMM
registers) and thereby offered 

• instructions that double the number of operations on all 
narrower data types
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SIMD Instruction Set Extensions for Multimedia

• AVX instructions for x86 architecture useful in double-precision 

floating-point programs.

• Packed-double for 256-bit AVX means four 64-bit operands executed in SIMD mode. 

• AVX includes instructions that shuffle 32-bit, 64-bit, or 128-bit operands within a 

256-bit register. 
– For example, BROADCAST replicates a 64-bit operand four times in an AVX register. 

• AVX also includes a large variety of fused multiply-add/subtract instructions
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SIMD Instruction Set Extensions for Multimedia

• Why are MM SIMD extensions so popular?
– they initially cost little to add to the standard arithmetic 

unit and they were easy to implement
– they require scant extra processor state compared to

vector architectures
– a lot of memory bandwidth is needed to support a vector 

architecture, which many computers don’t have
– SIMD does not have to deal with problems in virtual 

memory when a single instruction can generate 32
memory accesses and any of which can cause a page 
fault

• original SIMD extensions used separate data transfers per 
SIMD group of operands that are aligned in memory, and so 
they cannot cross page boundaries

78



14

Example SIMD Code

• This example shows RISC-V SIMD code for the DAXPY loop,

with the changes to the RISC-V code for SIMD underlined. 
– Starting addresses of X and Y are in x5 and x6, respectively.

fld f0 , a # Load scalar a

splat .4D f0 , f0 # Make 4 copies of a

addi x28 , x5 , #256 # Last address to load

Loop: fld.4D f1 , 0(x5) # Load X[i] ... X[i+3]

fmul.4D f1 , f1 , f0 # a x X[i] ... a x X[i+3]

fld.4D f2 , 0(x6) # Load Y[i] ... Y[i+3]

fadd.4D f2 , f2 , f1 # a x X[i]+Y[i]...

# a x X[i+3]+Y[i+3]

fsd.4D f2 , 0(x6) # Store Y[i]... Y[i+3]

addi x5 , x5 , #32 # Increment index to X

addi x6 , x6 , #32 # Increment index to Y

bne x28 , x5 , Loop # Check if done
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Programming Multimedia SIMD Architectures

• Easiest way to use SIMD MMX instructions has been 

through libraries or by writing in assembly language.

• Recent extensions have become more regular, giving 

compilers a more reasonable target. 
– By borrowing techniques from vectorizing compilers, 

compilers are starting to produce SIMD instructions 

automatically. 

– For example, advanced compilers today can generate SIMD

fp instructions to deliver much higher performance for 

scientific codes. 
• However, programmers must be sure to align all the data in memory 

to the width of the SIMD unit on which the code is run to prevent the 

compiler from generating scalar instructions for otherwise 

vectorizable code.
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Roofline Visual Performance Model

• Roofline model
– Visual, intuitive way to compare potential floating-point 

performance of variations of SIMD architectures

– horizontal and diagonal lines of the graphs it produces give 

this simple model its name and indicate its value

– It ties together floating-point performance, memory 

performance, and arithmetic intensity in a two-dimensional 

graph.

• Arithmetic intensity 
– The ratio of fp operations per byte of memory accessed. 

• can be calculated by taking the total number of fp operations for a 

program divided by the total number of data bytes transferred to main

memory during program execution. 
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Roofline Visual Performance Model

• Following figure shows the relative arithmetic intensity 

of several example kernels.

• Arithmetic intensity, specified as the number of fp operations to 

run the program divided by the number of bytes accessed in 

main memory
– Some kernels have an arithmetic intensity that scales with problem size, 

such as a dense matrix, but there are many kernels with arithmetic 

intensities independent of problem size.
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Roofline Model Examples

• The “Roofline” sets an upper bound on performance of 

a kernel depending on its arithmetic intensity.
– Y axis: attainable fp performance (GFLOPs/sec)

Attainable GFLOPs/sec = (Peak Memory BW × Arithmetic Intensity, 

Peak Floating Point Perf.)

– X axis: arithmetic intensity (1/8 to 16 FLOP/DRAM byte 

accessed)
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Comparisons on Roofline Models

• The dashed vertical lines at an arithmetic intensity of 4 

FLOP/byte:  
– The SX-9 at 102.4 FLOP/s is 2.4 faster than the Core i7 at 42.66 GFLOP/s. 

• At an arithmetic intensity of 1/4 FLOP/byte: 
– The SX-9 at 40.5 GFLOP/s is 10 faster than the Core i7 at 4.1 GFLOP/s.
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Roofline Visual Performance Model

• How could we plot the peak memory performance? 

• Because the X-axis is FLOP/byte and the Y-axis is 

FLOP/s, bytes/s is just a diagonal line at a 45-degree

angle in the figure. 
– Thus we can plot a third line that gives the maximum fp

performance that the memory system of that computer can 

support for a given arithmetic intensity. 

• We can express the limits as a formula to plot these 

lines in the graphs in previous slide

Attainable GFLOPs/s = Min (Peak Memory BW

× Arithmetic Intensity, Peak fp Perf.)

• Roofline sets an upper bound on performance of a 

kernel depending on its arithmetic intensity.
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Graphics Processing Units

• A highly parallel, highly multithreaded multiprocessor 

optimized for visual computing.
– GPU generates 2D and 3D graphics, images, and video that 

enable window based operating systems, graphical user 

interfaces, video games, visual imaging applications, and 

video

• To provide real-time visual interaction with computed 

objects via graphics, images, and video, the GPU has a 

unified graphics and computing architecture that serves 

as both a programmable graphics processor and a 

scalable parallel computing platform. 

• PCs and game consoles combine a GPU with a CPU to 

form heterogeneous systems.
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Graphics Processing Units

• Graphics Processing Unit (GPU) 

– A processor optimized for 2D and 3D graphics, 

video, visual computing, and display.

• Visual computing 

– A mix of graphics processing and computing that 

lets you visually interact with computed objects via

graphics, images, and video.

• Heterogeneous system

– A system combining different processor types.

• A PC is a heterogeneous CPU–GPU system.
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A Brief History of GPU Evolution

• Graphics on a PC were performed by a Video
Graphics Array (VGA) controller (20 years ago)
– a memory controller and display generator connected to 

some DRAM

• 1990s, more functions could be added to the VGA 
controller

• By 1997, incorporate some three-dimensional (3D) 
acceleration functions

• In 2000, single chip graphics processor 
incorporated almost every detail of the traditional 
high-end workstation graphics pipeline
– The term GPU was coined to denote that the graphics 

device had become a processor

88

GPU Graphics Trends

• GPUs and their associated drivers implement the 
OpenGL and DirectX models of graphics 
processing. 
– OpenGL is an open standard for 3D graphics 

programming available for most computers. 
– DirectX is a series of Microsoft multimedia 

programming interfaces. 

• Since these APIs have well-defined behavior, it is 
possible to build effective hardware acceleration of 
the graphics processing functions defined by the
APIs.
– API (Application Programming Interface) 

• A set of function and data structure definitions providing an
interface to a library of functions.
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GPU Evolves into Scalable Parallel Processor

• GPUs have evolved functionally from 

hardwired, limited capability VGA controllers

to programmable parallel processors

• This evolution has proceeded by changing the 

logical (API-based) graphics pipeline to 

incorporate programmable elements and also by 

making the underlying hardware pipeline stages 

less specialized and more programmable.

• Disparate programmable pipeline elements 

merged into one unified array of many 

programmable processors
90
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CUDA and GPU Computing

• GPU computing 
– Using a GPU for computing via a parallel 

programming language and API.

• GPGPU (General Purpose Computation on 

GPU) 
– Using a GPU for general-purpose computation via a

traditional graphics API and graphics pipeline.

• CUDA (Compute Unified Device Architecture)
– A scalable parallel programming model and 

language based on C/C++. 

– It is a parallel programming platform for GPUs and 

multicore CPUs.
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Compute Unified Device Architecture

• CUDA programming model has an SPMD

(Single-Program Multiple Data) software style, 

in which a programmer writes a program for 

one thread that is instanced and executed by 

many threads in parallel on the multiple 

processors of the GPU. 

• CUDA also provides a facility for programming 

multiple CPU cores as well, 
– so CUDA is an environment for writing parallel 

programs for the entire heterogeneous computer 

system.
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GPU System Architectures

• The Historical PC (circa 1990)

• North bridge contains 
high-bandwidth 
interfaces, connecting 
the CPU, memory, and 
PCI bus. 

• South bridge contains 
legacy interfaces and 
devices:

• ISA bus (audio, LAN), 
interrupt controller; 
DMA controller; 
time/counter. 

• The display was driven by a simple frame buffer subsystem 
known as a VGA which was attached to the PCI bus
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GPU System Architectures

• Contemporary PCs with Intel and AMD CPUs
– Characterized by a separate GPU (discrete GPU) 

and CPU with respective memory subsystems.
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Many-core GPU architecture 

• A single core (streaming 
multiprocessor, SMX)
– L1 cache, Read only cache, 

texture units
– 6 32-wide SIMD units (192 total, 

single precision)
– Up-to 64 warps simultaneously 

(hardware warps) 
• Like hyper-threading, but a warp is 

32-wide SIMD

• Optimal number of FLOPS per 
clock cycle:
– 32x: 32-way SIMD
– 2x: Fused multiply add
– 6x: 6 SIMD units per core
– 15x: 15 cores
– Sum: 5760!
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Simplified schematic of GPU design 

Massive Parallelism

• Up-to 5760 floating point operations in parallel!

• 5-10 times as power efficient as CPUs!
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GPU System Architectures

• Basic unified GPU architecture

97

GPU System Architectures

• 112 streaming processor (SP) cores 
– organized in 14 streaming multiprocessors (SMs); 

– the cores are highly multithreaded. 

• It has the basic Tesla architecture of an 

NVIDIA GeForce 8800. 
– The processors connect with 4 64-bit-wide DRAM

partitions via an interconnection network. 

– Each SM has 8 SP cores, 2 special function units

(SFUs), instruction and constant caches, a 

multithreaded instruction unit, and a shared 

memory.
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Programming the GPU

• Challenges for the GPU programmer:
– getting good performance on the GPU

– coordinating the scheduling of computation on the system processor and 

the GPU

– transfer of data between system memory and GPU memory

• GPUs have virtually every type of parallelism that can be captured by 

the programming environment:
– multithreading, MIMD, SIMD, and even instruction-level

• NVIDIA develop a C-like language and programming environment

that would improve the productivity of GPU programmers:
– CUDA (Compute Unified Device Architecture)

• CUDA produces C/C++ for the system processor (host) and a C and C++ dialect 

for the GPU

• A similar programming language is OpenCL, which several 

companies are developing to offer a vendor-independent language for 

multiple platforms
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Programming the GPU

• GPU Programming Languages 
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Threads and Blocks

• NVIDIA decided that the unifying theme of all 

these forms of parallelism is the CUDA Thread
– A thread is associated with each data element

– Threads are organized into blocks (Thread Block)

– Blocks are organized into a grid

• GPU hardware handles thread management, not 

applications or OS

• Hardware that executes a whole block of threads is 

called multithreaded SIMD Processor

• NVIDIA classifies the CUDA programming model 

as single instruction, multiple thread (SIMT)
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Grids and blocks in CUDA

• Two-layered parallelism
– A block consists of threads: 

• Threads within the 
same block can 
cooperate and 
communicate

– A grid consists of 
blocks: 

• All blocks run 
independently.

– Blocks and grid can be 1D, 2D, and 3D

• Global synchronization and communication is 
only possible between kernel launches
– Expensive, and should be avoided if possible
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Programming the GPU

• Computing y = ax + y with a serial loop 
(conventional C code for the DAXPY loop):

// Invoke DAXPY
daxpy(n, 2.0, x, y);
// DAXPY in C
void daxpy(int n, double a, double *x, double *y)
{

for (int i = 0; i < n; ++i)
y[i] = a*x[i] + y[i];

}

• has a loop where each iteration is independent from the 
others, 
– allowing the loop to be transformed straightforwardly into a 

parallel code where each loop iteration becomes a separate thread.
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Programming the GPU

• Computing y = ax + y in parallel using CUDA:

// Invoke DAXPY with 256 threads per Thread Block
__host__
int nblocks = (n+ 255) / 256;

daxpy<<<nblocks, 256>>>(n, 2.0, x, y);
// DAXPY in CUDA
__global__
void daxpy(int n, double a, double *x, double *y)
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];

}

• n threads, one per vector element, with 256 CUDA Threads per Thread Block 
in a multithreaded SIMD Processor. 

• GPU function starts by calculating the corresponding element index i based 
on the block ID, the number of threads per block, and the thread ID. 

– As long as this index is within the array (i < n), it performs the multiply and add.
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Example: Adding two matrices in CUDA

• We want to add two 
matrices, a and b, 
and store the result in c.

• For best performance, loop through one row at a time 
(sequential memory access pattern)

void addFunctionCPU(float* c, float* a, float* b, 
unsigned int cols, unsigned int rows) { 

for (unsigned int j=0; j<rows; ++j) { 
for (unsigned int i=0; i<cols; ++i) { 

unsigned int k = j*cols + i; 
c[k] = a[k] + b[k]; 

} 
} 

} 
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Example: Adding two matrices in CUDA

__global__ void addMatricesKernel(float* c, float* a, float* b, GPU
unsigned int cols, unsigned int rows) { function

//Indexing calculations Indices
unsigned int global_x = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int global_y = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int k = global_y*cols + global_x;

//Actual addition
c[k] = a[k] + b[k];

}

void addFunctionGPU(float* c, float* a, float* b,
unsigned int cols, unsigned int rows) {

dim3 block(8, 8); Run on GPU
dim3 grid(cols/8, rows/8);
... //More code here: Allocate data on GPU, copy CPU data to GPU
addMatricesKernel<<<grid, block>>>(gpu_c, gpu_a, gpu_b, cols, rows);
... //More code here: Download result from GPU to CPU

}
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Implicit double for loop 

for (int blockIdx.x = 0; 

blockIdx.x < grid.x; 

blockIdx.x) { … 

NVIDIA GPU Architecture

• Similarities to vector machines:
– Works well with data-level parallel problems

– Scatter-gather transfers

– Mask registers

– Large register files

• Differences:
– No scalar processor

– Uses multithreading to hide memory latency

– Has many functional units, as opposed to a few 

deeply pipelined units like a vector processor
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Example

• Code that works over all elements is the grid

• Thread blocks break this down into manageable sizes
– 512 threads per block

• SIMD instruction executes 32 elements at a time

• Thus grid size = 16 blocks

• Block is analogous to a strip-mined vector loop with vector 

length of 32

• Block is assigned to a multithreaded SIMD processor by the 

thread block scheduler

• Current-generation GPUs have 7-15 multithreaded SIMD 

processors
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Quick guide to GPU terms

109

Quick guide to GPU terms
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Terminology

• A Grid is the code that runs on a GPU that consists of a set of Thread Blocks.

• Each thread is limited to 64 registers

• Groups of 32 threads combined into a SIMD thread or “warp”
– Mapped to 16 physical lanes

• Up to 32 warps are scheduled on a single SIMD processor
– Each warp has its own PC

– Thread scheduler uses scoreboard to dispatch warps

– By definition, no data dependencies between warps

– Dispatch warps into pipeline, hide memory latency

• Thread block scheduler schedules blocks to SIMD processors

• Within each SIMD processor:
– 32 SIMD lanes

– Wide and shallow compared to vector processors
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Example

• Mapping of a Grid (vectorizable loop), 

Thread Blocks (SIMD basic blocks), and 

threads of SIMD instructions to a vector-

vector multiply, with each vector being 8192 

elements long. 

• Each thread of SIMD instructions calculates 

32 elements per instruction, 

• Each Thread Block contains 16 threads of 

SIMD instructions and the Grid contains 16 

Thread Blocks. 

• The hardware Thread Block Scheduler 

assigns Thread Blocks to multithreaded 

SIMD Processors, and the hardware Thread 

Scheduler picks which thread of SIMD 

instructions to run each clock cycle within a 

SIMD Processor. 

• Only SIMD Threads in the same Thread 

Block can communicate via local memory. 
– The maximum number of SIMD Threads that can execute 

simultaneously per Thread Block is 32 for Pascal GPUs.
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GPU Organization
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Simplified block diagram of 

a multithreaded SIMD 

Processor

Pascal P100 GPU

• Full-chip block diagram of the Pascal P100 GPU
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Pascal P100 GPU

• It has 56 multithreaded SIMD Processors, 
– each with an L1 cache and local memory, 

• 32 L2 units, and a memory-bus width of 4096

data wires. 
– It has 60 blocks, with four spares to improve yield. 

• The P100 has 4 HBM2 ports supporting up to 

16 GB of capacity. 

• It contains 15.4 billion transistors.
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Scheduling of threads of SIMD instructions

• The scheduler selects a 

ready thread of SIMD

instructions and issues an 

instruction synchronously to 

all the SIMD Lanes 

executing the SIMD Thread. 

• Because threads of SIMD

instructions are 

independent, the scheduler 

may select a different SIMD 

Thread each time.
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NVIDIA Instruction Set Arch.

• ISA is an abstraction of the hardware instruction set
– Parallel Thread Execution (PTX)

• provides a stable instruction set for compilers 

• as compatibility across generations of GPUs.

• Format of a PTX instruction is
– opcode.type d,a,b,c;

• where d is the destination operand; a, b, and c are source operands; 

• operation type is one of the following:
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NVIDIA Instruction Set Arch.

– Uses virtual registers
– Translation to machine code is performed in software

• Example:
– Following sequence of PTX instructions is for one iteration of 

DAXPY

shl.s32 R8, blockIdx, 9 ; Thread Block ID * Block size (512 or 29)
add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID
ld.global.f64 RD0, [X+R8] ; RD0 = X[i]
ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]
mul.f64 R0D, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)
add.f64 R0D, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])
st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])

• CUDA programming model assigns one CUDA Thread to 
each loop iteration and offers a unique identifier number to 
each Thread Block (blockIdx) and one to each CUDA
Thread within a block (threadIdx).
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Conditional Branching

• Like vector architectures, GPU branch hardware uses internal 

masks

• Also uses
– Branch synchronization stack

• Entries consist of masks for each SIMD lane

• I.e. which threads commit their results (all threads execute)

– Instruction markers to manage when a branch diverges into multiple 

execution paths
• Push on divergent branch

– …and when paths converge
• Act as barriers

• Pops stack

• Per-thread-lane 1-bit predicate register, specified by 

programmer
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Example

• The code for a conditional statement
if (X[i] != 0)

X[i] = X[i] – Y[i];

else X[i] = Z[i];

• This IF statement could compile to the following PTX 

instructions:
ld.global.f64 RD0, [X+R8] ; RD0 = X[i]

setp.neq.s32 P1, RD0, #0 ; P1 is predicate register 1

@!P1, bra ELSE1, *Push ; Push old mask, set new mask bits

; if P1 false, go to ELSE1

ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

sub.f64 RD0, RD0, RD2 ; Difference in RD0

st.global.f64 [X+R8], RD0 ; X[i] = RD0

@P1, bra ENDIF1, *Comp ; complement mask bits

; if P1 true, go to ENDIF1

ELSE1: ld.global.f64 RD0, [Z+R8] ; RD0 = Z[i]

st.global.f64 [X+R8], RD0 ; X[i] = RD0

ENDIF1: <next instruction>, *Pop ; pop to restore old mask
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NVIDIA GPU Memory Structures

• Each SIMD Lane has private section of off-chip 

DRAM
– “Private memory”

– Contains stack frame, spilling registers, and private 

variables

• Each multithreaded SIMD processor also has 

local memory
– Shared by SIMD lanes / threads within a block

• Memory shared by SIMD processors is GPU 

Memory
– Host can read and write GPU memory
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NVIDIA GPU Memory Structures

• GPU memory is 
shared by all Grids 
(vectorized loops), 
local memory is 
shared by all threads 
of SIMD 
instructions within a 
Thread Block (body 
of a vectorized
loop), and private 
memory is private to 
a single CUDA 
Thread.

• Pascal allows 
preemption of a 
Grid, which requires 
that all local and 
private memory be 
able to be saved in 
and restored from 
global memory.
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• Each SIMD processor has
– Two or four SIMD thread schedulers, two instruction dispatch 

units
– 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store 

units, 4 special function units
– Two threads of SIMD instructions are scheduled every two clock 

cycles

• Four main innovations
– of Pascal:Fast single-, double-, and half-precision fp arithmetic

• Single precision fp of the GPU runs at a peak of 10 TeraFLOP/s.
• Double-precision is roughly half-speed at 5 TeraFLOP/s, 
• half-precision is about double-speed at 20 TeraFLOP/s when expressed as 2-

element vectors

– High Bandwith Memory (HBM2)
• wide bus (4096 data wires running at 0.7 GHz, peak bandwidth of 732 GB/s)

– High-speed chip-to-chip interconnect
• NVLink between multiple GPUs (20 GB/s in each direction)

– Unified virtual memory and paging support
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Pascal Architecture Innovations
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Pascal Multithreaded SIMD Proc.

• Both architectures are designed to execute data-level parallel 

programs

• Multiple SIMD Processors in GPUs act as independent MIMD

cores, just as many vector computers have multiple vector 

processors

• Multithreading is fundamental to GPUs, but missing from most 

vector processors

• Registers
– RV64V register file holds entire vectors, GPU distributes vectors across 

the registers of SIMD lanes

– RV64 has 32 vector registers of 32 elements (1024), GPU has 256 

registers with 32 elements each (8192), supporting multithreading

– RV64 has 2 to 8 lanes with vector length of 32, chime is 4 to 16 cycles, a 

multithreaded SIMD processor chime is 2 to 4 cycles

• The closest GPU term to a vectorized loop is Grid
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Vector Architectures vs GPUs

• All GPU loads are gather instructions and all 

GPU stores are scatter instructions

• GPUs have more  SIMD lanes

• GPUs have hardware support for more threads

• Both have 2:1 ratio between double- and single-

precision performance

• Both have 64-bit addresses, but GPUs have 

smaller memory

• SIMD architectures have no scatter-gather 

support
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SIMD Architectures vs GPUs
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SIMD Architectures vs GPUs

• Similarities and differences between multicore with 

multimedia SIMD extensions and recent GPUs
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• Loops in programs are the fountainhead of many of the types of 

parallelism

• Finding and manipulating loop-level parallelism is critical to 

exploiting both DLP and TLP, as well as the more aggressive static 

ILP approaches

• Loop-level parallelism is investigated at the source level or close to 

it, 
– while most analysis of ILP is done once instructions have been generated 

by the compiler. 

• Loop-level analysis involves determining what dependences exist 

among the operands in a loop across the iterations of that loop. 
– Data dependences arise when an operand is written at some point and 

read at a later point. 

– Name dependences also exist and may be removed by the renaming 

techniques
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Loop-Level Parallelism

• Analysis of loop-level parallelism focuses on 

determining whether data accesses in later iterations 

are dependent on data values produced in earlier 

iterations;
– such dependence is called a loop-carried dependence. 

• Example 1

for (i=999; i>=0; i=i-1)

x[i] = x[i] + s;

– Two uses of x[i] are dependent, 
• this dependence is within a single iteration and is not loop-carried. 

– There is a loop-carried dependence between successive uses 

of i in different iterations, 
• this dependence involves an induction variable that can be easily 

recognized and eliminated.
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Loop-Level Parallelism

• Example 2

• Consider a loop like this one:

for (i=0; i<100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */

B[i+1] = B[i] + A[i+1]; /* S2 */

}

• What are the data dependences among the 

statements S1 and S2 in the loop?
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Loop-Level Parallelism

• Answer:
for (i=0; i<100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */

B[i+1] = B[i] + A[i+1]; /* S2 */

}

• There are two different dependences:
– S1 uses a value computed by S1 in an earlier 

iteration, 
• because iteration i computes A[i+1], which is read in 

iteration i+1. 

• The same is true of S2 for B[i] and B[i+1].

– S2 uses the value A[i+1] computed by S1 in the 

same iteration
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Loop-Level Parallelism Loop-Level Parallelism

• These two dependences are distinct and have 
different effects. 

• Assuming that only one of these dependences 
exists at a time,
– because the dependence of statement S1 is on an earlier 

iteration of S1, this dependence is loop-carried. 
– This dependence forces successive iterations of this loop 

to execute in series.

• 2nd dependence is within an iteration and is not 
loop-carried. 
– Thus, if this were the only dependence, multiple 

iterations of the loop would execute in parallel, 
• as long as each pair of statements in an iteration were kept in 

order.
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• Example 3

• Consider a loop like this one:

for (i=0; i<100; i=i+1) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

• What are the dependences between S1 and S2? 

• Is this loop parallel? 

• If not, show how to make it parallel.
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Loop-Level Parallelism

• Answer
for (i=0; i<100; i=i+1) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

• S1 uses value computed by S2 in previous 

iteration 
– so there is a loop-carried dependence between S2 and S1

• But dependence is not circular so loop is 

parallel
– A loop is parallel if it can be written without a cycle in the 

dependences because the absence of a cycle means that the 

dependences give a partial ordering on the statements.
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Loop-Level Parallelism

• Although there are no circular dependences in the preceding 
loop, it must be transformed to conform to the partial ordering 
and expose the parallelism
– There is no dependence from S1 to S2
– On the first iteration of the loop, statement S2 depends on the value of 

B[0] computed prior to initiating the loop

• These two observations allow us to replace the preceding loop 
with the following code sequence:

A[0] = A[0] + B[0];
for (i=0; i<99; i=i+1) {

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

}
B[100] = C[99] + D[99];

• The dependence between the two statements is no longer loop-
carried so that iterations of the loop may be overlapped, 
provided the statements in each iteration are kept in order.
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Loop-Level Parallelism

• Example 4
• Consider the following code:

for (i=0;i<100;i=i+1)  {

A[i] = B[i] + C[i];

D[i] = A[i] * E[i];

}

• The second reference to A in this example need not be 

translated to a load instruction because we know that 

the value is computed and stored by the previous

statement. 
– Thus the second reference to A can simply be a reference to 

the register into which A was computed.
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Loop-Level Parallelism

• Example 5
• Often loop-carried dependences are in the form of a 

recurrence. 
• A recurrence occurs when a variable is defined based on 

the value of that variable in an earlier iteration, usually the 
one immediately preceding,

• Consider the following code:
for (i=1;i<100;i=i+1)  {

Y[i] = Y[i-1] + Y[i];
}

• Detecting a recurrence can be important for two reasons: 
– some architectures (especially vector computers) have special 

support for executing recurrences,
– in an ILP context, it may still be possible to exploit a fair amount 

of parallelism.
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Loop-Level Parallelism Finding dependencies

• Finding the dependences in a program is 

important
– to determine which loops might contain parallelism 

– to eliminate name dependences. 

• The complexity of dependence analysis arises 

also because of the presence of 
– arrays and pointers in languages such as C or C++, 

– pass-by-reference parameter passing in Fortran

• How does the compiler detect dependences in 

general? 
– Nearly all dependence analysis algorithms work on 

the assumption that array indices are affine
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• A one-dimensional array index is affine if it can 

be written in the form:
– a × i + b (a and b are constants and i is loop index)

• Index of a multidimensional array is affine if the 

index in each dimension is affine

• Assume:
– Stored to a × i + b, then

– Loaded from c × i + d
• where i is the for-loop index variable that runs from m to n

– Dependence exists if:
• Given j, k such that m ≤ j ≤ n, m ≤ k ≤ n

• Store to a × j + b, load from a × k + d, and a × j + b = c × k + d
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Finding dependencies

• Generally cannot be determined at compile time

• A simple and sufficient test for the absence of a 

dependence is the greatest common divisor 

(GCD) test:

– It is based on the observation that if a loop-carried 

dependence exists, then GCD(c, a) must divide (d – b).

• Recall that an integer, x, divides another integer, y, if we 

get an integer quotient when we do the division y/x and 

there is no remainder.
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Finding dependencies

• Example:

• Use the GCD test to determine whether 

dependences exist in the following loop:
for (i=0; i<100; i=i+1) {

X[2*i+3] = X[2*i] * 5.0;

}

• Answer

• Given the values a = 2, b =3, c = 2, and d = 0, 

then GCD(a, c) = 2, and d – b = -3.

• Because 2 does not divide -3, no dependence is 

possible.
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Finding dependencies Finding dependencies

• The GCD test is sufficient to guarantee that no 
dependence exists; 
– however, there are cases where the GCD test succeeds 

but no dependence exists. 
• This can arise, for example, because the GCD test does not 

consider the loop bounds.

• In general, determining whether a dependence 
actually exists is NP-complete.

• In addition to detecting the presence of a 
dependence, a compiler wants to classify the type 
of dependence. 
– This classification allows a compiler to recognize name 

dependences and eliminate them at compile time by 
renaming and copying.
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Finding dependencies

• Example 
• The following loop has multiple types of 

dependences. 
• Find all the true dependences, output dependences, 

and antidependences, and eliminate the output
dependences and antidependences by renaming.

for (i=0; i<100; i=i+1) {
Y[i] = X[i] / c; /* S1 */
X[i] = X[i] + c; /* S2 */
Z[i] = Y[i] + c; /* S3 */
Y[i] = c - Y[i]; /* S4 */

}

143

Finding dependencies

• Answer
• The following dependences exist among the four 

statements:
– There are true dependences from S1 to S3 and from S1

to S4 because of Y[i].
• These are not loop-carried, so they do not prevent the loop 

from being considered parallel. 
• These dependences will force S3 and S4 to wait for S1 to

complete.

– There is an antidependence from S1 to S2, based on 
X[i].

– There is an antidependence from S3 to S4 for Y[i].
– There is an output dependence from S1 to S4, based on 

Y[i].
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Finding dependencies

• The following version of the loop eliminates 

these false (or pseudo) dependences.

for (i=0; i<100; i=i+1 {

T[i] = X[i] / c; /* Y renamed to T to remove output

dependence */

X1[i] = X[i] + c; /* X renamed to X1 to remove

antidependence */

Z[i] = T[i] + c; /* Y renamed to T to remove

antidependence */

Y[i] = c - T[i];

}
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• One of the most important forms of dependent computations is a 

recurrence. 
– A dot product is a perfect example of a recurrence:

for (i=9999; i>=0; i=i-1)

sum = sum + x[i] * y[i];

• This loop is not parallel 
– because it has a loop-carried dependence on the variable sum

• Transform to…
for (i=9999; i>=0; i=i-1)

sum [i] = x[i] * y[i];

for (i=9999; i>=0; i=i-1)

finalsum = finalsum + sum[i];

• In 1st loop, sum has been expanded from a scalar into a vector quantity
– This transformation is called scalar expansion 

• makes this new loop completely parallel.

• 2nd loop is the reduce step
– Although this loop is not parallel, it has a very specific structure called a reduction.

– Reductions are common in linear algebra
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Eliminating Dependent Computations

• Reductions are sometimes handled by special hardware in a 
vector and SIMD architecture that allows the reduce step to be 
done much faster than it could be done in scalar mode.
– These work by implementing a technique similar to what can be done in 

a multiprocessor environment.

• Suppose for simplicity we have 10 processors.
– In the first step of reducing the sum, each processor executes the 

following (with p as the processor number ranging from 0 to 9):
for (i=999; i>=0; i=i-1)

finalsum[p] = finalsum[p] + sum[i+1000*p];

• This loop is completely parallel. 
– A simple scalar loop can then complete the summation of the last 10 

sums. 

• Similar approaches are used in vector processors and SIMD
Processors.

• It is important to observe that the preceding transformation 
relies on associativity of addition.
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Eliminating Dependent Computations Fallacies and Pitfalls

• GPUs suffer from being coprocessors
– GPUs have flexibility to change ISA

• Concentrating on peak performance in vector architectures and 

ignoring start-up overhead
– Overheads require long vector lengths to achieve speedup

• Increasing vector performance without comparable increases in 

scalar performance

• You can get good vector performance without providing 

memory bandwidth

• On GPUs, just add more threads if you don’t have enough 

memory performance
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