
1

BLM6112

Advanced Computer Architecture
Data-Level Parallelism in Vector, SIMD, and

GPU Architectures - 1

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

1

Introduction

• A summary of the five mainstream computing

classes and their system characteristics:

2

Introduction

• Classes of Parallelism :
– Data-Level Parallelism (DLP) arises

• because there are many data items that can be operated on

at the same time.

– Task-Level Parallelism (TLP) arises
• because tasks of work are created that can operate

independently and largely in parallel.

– Flynn, M. J. (1966). Very high-speed computing systems. Proceedings of the

IEEE, 54(12), 1901–1909. doi:10.1109/proc.1966.5273

• Computer hardware in turn can exploit these

two kinds of application parallelism in four

major ways:
3

Introduction

– Instruction-level parallelism exploits
• DLP at modest levels with compiler help using ideas like

pipelining and at medium levels using ideas like
speculative execution.

– Vector architectures, Graphic Processor Units
(GPUs), and multimedia instruction sets exploit

• DLP by applying a single instruction to a collection of
data in parallel.

– Thread-level parallelism exploits either
• DLP or TLP in a tightly coupled hardware model that

allows for interaction between parallel threads.

– Request-level parallelism exploits
• parallelism among largely decoupled tasks specified by

the programmer or the operating system.

4

Introduction

• Classes of computers (interms of # of processors):
– Single Instruction stream, Single Data stream (SISD)

• This category is the uniprocessor.

• The programmer thinks of it as the standard sequential

computer, but it can exploit ILP.

– Single Instruction stream, Multiple Data streams

(SIMD)
• The same instruction is executed by multiple processors using

different data streams.

• SIMD computers exploit DLP by applying the same operations

to multiple items of data in parallel.

• Each processor has its own data memory (hence, the MD of

SIMD), but there is a single instruction memory and control

processor, which fetches and dispatches instructions.

5

Introduction

– Multiple Instruction streams, Single Data stream

(MISD)
• No commercial multiprocessor of this type has been built

to date, but it rounds out this simple classification.

– Multiple Instruction streams, Multiple Data streams

(MIMD)
• Each processor fetches its own instructions and operates

on its own data, and it targets TLP.

• In general, MIMD is more flexible than SIMD and thus

more generally applicable, but it is inherently more

expensive than SIMD.

6

mailto:naydin@yildiz.edu.tr

2

SIMD Parallelism

• A question for the SIMD architecture has

always been just how wide a set of applications

has significant DLP.

• SIMD architectures can exploit significant DLP

for:
– Matrix-oriented scientific computing

– Media-oriented image and sound processing

– Machine learning algorithms

7

SIMD Parallelism

• SIMD is more energy efficient than Multiple

Instruction Multiple Data (MIMD)
– MIMD needs to fetch one instruction per data

operation

– In SIMD, a single instruction can launch many data

operations

– Makes SIMD attractive for personal mobile devices

as well as for servers
• SIMD allows programmer to continue to think

sequentially yet achieves parallel speedup by having

parallel data operations

8

SIMD Parallelism

• There are three variations of SIMD
– Vector architectures

• Extends pipelined execution of many data operations.
• Easier to understand and to compile, but they were considered

too expensive for microprocessors until recently.
– Part of that expense was in transistors, and part was in the cost of

sufficient dynamic random access memory (DRAM) bandwidth,
given the widespread reliance on caches to meet memory
performance demands on conventional microprocessors.

– Multimedia SIMD instruction set extensions
• found in most instruction set architectures that support

multimedia applications.
– For x86 architectures, the SIMD instruction extensions started with

the MMX (multimedia extensions) in 1996, which were followed by
several SSE (streaming SIMD extensions) versions in the next
decade, and they continue until this day with AVX (advanced vector
extensions).

– To get the highest computation rate from an x86 computer, you
often need to use these SIMD instructions, especially for floating-
point programs.

9

SIMD Parallelism

– Graphics Processing Units (GPUs)
• comes from the graphics accelerator community, offering

higher potential performance than is found in traditional
multicore computers today.

• Although GPUs share features with vector architectures,
they have their own distinguishing characteristics, in part
because of the ecosystem in which they evolved.

• This environment has a system processor and system
memory in addition to the GPU and its graphics memory.
In fact, to recognize those distinctions, the GPU
community refers to this type of architecture as
heterogeneous.

10

SIMD vs. MIMD

• For x86
processors:
– Expect two

additional cores
per chip per year

– SIMD width to
double every four
years

– Potential speedup
from SIMD to be
twice that from
MIMD!

11

Vector Supercomputers

• In 70-80s, Supercomputer  Vector machine
• Definition of supercomputer

– Fastest machine in the world at given task
– A device to turn a compute-bound problem into an

I/O bound problem
– CDC6600 (Cray, 1964) is regarded as the first

supercomputer

• Vector supercomputers (epitomized by Cray 1,
1976)
– Scalar unit + vector extensions

• Vector registers, vector instructions
• Vector loads/stores
• Highly pipelined functional units

12

3

Cray-1 (1976)

13

Vector Memory Memory vs. Vector Register Machines

• Vector memory-memory instructions hold all vector operands in

main memory
– The first vector machines, CDC Star 100 (1973) and TI ASC (1971),

were memory-memory machines

• Cray 1 (1976) was first vector register machine

14

Vector Memory Memory vs. Vector Register Machines

• Vector memory-memory architectures (VMMA)
require greater main memory bandwidth, why?
– All operands must be read in and out of memory

• VMMAs make it difficult to overlap execution of
multiple vector operations, why?
– Must check dependencies on memory addresses

• VMMAs incur greater startup latency
– Scalar code was faster on CDC Star-100 for vectors <

100 elements
– For Cray-1, vector/scalar breakeven point was around 2

elements
• Apart from CDC follow ons (Cyber-205, ETA-10) all major

vector machines since Cray-1 have had vector register
architectures

15

Vector Architectures

• Basic idea:
– Read sets of data elements into vector registers
– Operate on data in those register files
– Disperse the results back into memory

• Vector loads/stores are deeply pipelined
– Program pays the long memory latency only once per

vector load/store vs. latency for each element for regular
load/store.

• Register files are controlled by compiler
– Register files act as compiler controlled buffers
– Used to hide memory latency
– Leverage memory bandwidth

• Kozyrakis, C., & Patterson, D. (n.d.). Vector vs. superscalar and VLIW
architectures for embedded multimedia benchmarks. 35th Annual IEEE/ACM
International Symposium on Microarchitecture, 2002. (MICRO-35). Proceedings.
doi:10.1109/micro.2002.1176257

16

Vector Processing Model

• Vector processors have high-level operations

that work on linear arrays of numbers: vectors

17

RISC-V Vector (RVV) ISA Example: RV64V

• Loosely based on Cray-1
– Vector registers

• 8 vector registers in this example

• Each register holds a 32-element, 64 bits/element vector

• Register file has 16 read ports and 8 writeports

– Vector functional units
• 5 FUs in this example

• Fully pipelined

• Data and control hazards are

detected

– Vector load-store unit
• Fully pipelined

• Words move between registers

and memory

• One word per clock cycle after

initial latency

– Scalar registers
• 31 general-purpose registers

• 32 FP registers point registers (RV64V)

18

4

Vector Programming Model

19

Vector Instruction Set Advantages

• Compact
– One short instruction encodes N operations

• Expressive
– tells hardware that these N operations are independent

– N operations use the same functional unit

– N operations access disjoint registers

– N operations access registers in the same pattern as previous

instruction

– N operations access a contiguous block of memory (unit

stride load/store)

– N operations access memory in a known pattern (stridden

load/store)

• Scalable
– Can run same object code on more parallel pipelines or lanes

20

The RV64V Instructions

21

The RV64V Instructions

22

The RV64V vector instructions

• All use the R instruction format.

• Each vector operation with two operands is

shown with both operands being vector (.vv)

• There are also versions where

– the second operand is a scalar register (.vs)

– the first operand is a scalar register and the second is

a vector register (.sv).

23

The RV64V vector instructions

• Operate on many elements concurrently

– Allows use of slow but wide execution units

• High performance, lower power

• Independence of elements within a vector

instruction

– Allows scaling of functional units without costly

dependencechecks

• Flexible

– 32 64-bit / 128 16-bit / 256 8-bit

– Matches the need of multimedia (8bit), scientific

applications that require high precision

24

5

How Vector Processors Work: An Example

• We can best understand a vector processor by

looking at a vector loop for RV64V.

• Let’s take a typical vector problem

Y = a × X + Y
– X and Y are vectors, initially resident in memory,

and a is a scalar.
• This problem is the SAXPY (single-precision a X plus Y)

or DAXPY (double precision a X plus Y) loop that forms

the inner loop of the Linpack benchmark
– (Dongarra et al., 2003, https://doi.org/10.1002/cpe.728).

• Linpack is a collection of linear algebra routines, and the

Linpack benchmark consists of routines for performing

Gaussian elimination.
25

RV64V Example: DAXPY Loop

• Show the code for RV64G and RV64V for the

DAXPY loop.
– for (i=0; i<32; i++)

Y[i] = a  X[i] + Y[i]
• adds a scalar multiple of a double precision vector to

another double precision vector

• For this example, assume that
– X and Y have 32 elements

– the number of elements (i.e. Length) of the vectors

matches the length of the vector operation.

– the starting addresses of X and Y are in x5 and x6

26

Answer

• Here is the RISC-V code:

fld f0,a # Load scalar a

addi x28 , x5, #256 # Last address to load

Loop: fld f1 , 0(x5) # Load X[i]

fmul.d f1 , f1 , f0 # a  X[i]

fld f2 , 0(x6) # Load Y[i]

fadd.d f2 , f2 , f1 # a X[i] + Y[i]

fsd f2 , 0(x6) # Store into Y[i]

addi x5 ,x5 , #8 # Increment index to X

addi x6 , x6 , #8 # Increment index to Y

bne x28 , x5 , Loop # Check if done

27

Answer

• Here is the RV64V code for DAXPY:

vsetdcfg 4*FP64 # Enable 4 DP FP vector registers

fld f0 , a # Load scalar a

vld v0 , x5 # Load vector X

vmul v1 , v0 , f0 # Vector-scalar multiply

vld v2 , x6 # Load vector Y

vadd v3 , v1 , v2 # Vector-vector add

vst v3 , x6 # Store the sum

vdisable # Disable vector registers

– Note that the assembler determines which version of the vector operations to

generate.
• Because the multiply has a scalar operand, it generates vmul.vs, whereas the add

doesn’t, so it generates vadd.vv.

– The initial instruction configures the first four vector registers to hold 64-bit

floating-point data.

– The last instruction disables all vector registers.

28

Answer

RV64G Code RV64V Code

29

Answer

• 8 RV64V vector instructions vs. 258 RV64G scalar

instructions

• In RV64G Code
– Fadd.d must wait for fmul.d

– fsd must wait for fadd.d

– Lots of pipeline stalls are necessary for deeply pipelined

architecture.

• In RV64V Code
– Stall once for the first vector element, subsequent elements will

flow smoothly down the pipeline.

– Pipeline stalls are required only once per vector instruction, rather

than once per vector element

• Pipeline stall frequency on RV64G will be about 32 higher

than it is on RV64V.

30

6

Remarks

• The most dramatic difference between the scalar
and vector code is that the vector processor greatly
reduces the dynamic instruction bandwidth,
executing only 8 instructions versus 258 for
RV64G.

• When the compiler produces vector instructions for
such a sequence, and the resulting code spends
much of its time running in vector mode,
– the code is said to be vectorized or vectorizable.

• Loops can be vectorized when they do not have
dependences between iterations of a loop,
– which are called loop-carried dependences

31

Example

• A common use of multiply-accumulate

operations is to multiply using narrow data and

to accumulate at a wider size to increase the

accuracy of a sum of products.

• Show how the preceding code would change if

X and a were single-precision instead of a

double-precision floating point.

• Next, show the changes to this code if we

switch X, Y, and a from floating-point type to

integers.
32

Answer

• The same code works with two small changes:
– The configuration instruction includes one single-

precision vector,

– the scalar load is now single-precision:

vsetdcfg 1*FP32 , 3*FP64 # 1 32b, 3 64b vregs

flw f0 , a # Load scalar a

vld v0 , x5 # Load vector X

vmul v1 , v0 , f0 # Vector-scalar mult

vld v2 , x6 # Load vector Y

vadd v3 , v1 , v2 # Vector-vector add

vst v3 , x6 # Store the sum

vdisable # Disable vector regs

33

Answer

– RV64V hardware will implicitly perform a conversion from

the single-precision to the double-precision in this setup.

– We must use an integer load instruction and integer register

to hold the scalar value:

vsetdcfg 1*X32,3*X64 # 1 32b, 3 64b int reg

lw x7 , a # Load scalar a

vld v0 , x5 # Load vector X

vmul v1 , v0 , x7 # Vector-scalar mult

vld v2 , x6 # Load vector Y

vadd v3 , v1 , v2 # Vector-vector add

vst v3 , x6 # Store the sum

vdisable # Disable vector regs

34

Challenges of Vector Instructions

• Start up time
– Application and architecture must support long

vectors.
• Otherwise, they will run out of instructions requiring ILP

• Long latency of vector functional unit
– Assume the same as Cray-1

• Floating point add => 6 clock cycles

• Floating point multiply => 7 clock cycles

• Floating point divide => 20 clock cycles

• Vector load => 12 clock cycles

35

Vector Execution Time

• Execution time of a sequence of vector operations
depends on three factors:
– Length of operand vectors
– Structural hazards among the operations
– Data dependencies

• Modern vector computers have vector functional units
with multiple parallel pipelines that can produce two or
more results per clock cycle

• RV64V functional units consume one element per clock
cycle for individual operations
– Thus the execution time in clock cycles for a single vector

instruction is approximately the vector length

• Efficient way to estimate the execution time:
– Convoy and chime

36

7

Vector Instruction Parallelism

• Can overlap execution of multiple vector instructions
– example machine has 32 elements per vector register and 8

lanes

– Complete 24 operations/cycle while issuing 1 short

instruction/cycle

37

Convoy

• Convoy
– Set of vector instructions that could potentially execute together

• Instructions in a convoy must not contain any structural

hazards;

– if such hazards were present, the instructions would need to be

serialized and initiated in different convoys.
• Thus the vld and the following vmul in the preceding example can be

in the same convoy.

• One can estimate performance of a section of code by

counting the number of convoys.

• It is assumed that a convoy of instructions must complete

execution before any other instructions (scalar or vector) can

begin execution.

38

Vector Chaining

• Sequences with read-after-write (RAW) dependency hazards

should be in separate convoy.
– However, chaining allows them to be in the same convoy

• Chaining

– Allows a vector operation to start as soon as the individual

elements of its vector source operand become available
• the results from the first functional unit in the chain are forwarded to

the second functional unit

• Chaining is implemented by allowing the processor to read and

write a particular vector register at the same time

• Recent implementations use flexible chaining, which allows a

vector instruction to chain to essentially any other active vector

instruction, assuming that we don’t generate a structural hazard.

• All modern vector architectures support flexible chaining

39

Vector Chaining

• Vector version of register bypassing
– Allows a vector operation to start as soon as the individual

elements of its vector source operand become available

40

Advantages of Vector Chaining

• Without chaining,
– must wait for last element of result to be written before

starting dependent instruction

• With chaining,
– can start dependent instruction as soon as first result appears

41

Chimes

• To turn convoys into execution time, we need a
metric to estimate the length of a convoy.

• Chime
– Unit of time taken to execute one convoy

• a vector sequence that consists of m convoys
executes in m chimes;
– for a vector length of n, for RV64V implementation,

this is approximately m×n clock cycles.

• Chime approximation ignores some processor-
specific overheads, many of which are
dependent on vector length.
– Therefore measuring time in chimes is a better

approximation for long vectors than for short ones.
42

8

Execution Time Example

• Show how the following code sequence lays out in
convoys, assuming a single copy of each vector
functional unit:

vld v0 , x5 # Load vector X
vmul v1 , v0 , f0 # Vector-scalar multiply
vld v2 , x6 # Load vector Y
vadd v3 , v1 , v2 # Vector-vector add
vst v3 , x6 # Store the sum

– How many chimes will this vector sequence take?
– How many cycles per FLOP (floating-point operation)

are needed, ignoring vector instruction issue overhead?

43

Answer

• 3 Convoys:
– 1st convoy starts with the 1st vld instruction.

• vmul is dependent on the 1st vld,
– but chaining allows it to be in the same convoy.

– 2nd vld instruction must be in a separate convoy

because there is a structural hazard on the load/store

unit for the prior vld instruction.
• vadd is dependent on the 2nd vld,

– but it can be in the same convoy via chaining.

– vst has a structural hazard on the vld in the 2nd

convoy,
• so it must go in the third convoy.

44

Answer

• This analysis leads to the following layout of vector

instructions into convoys:
1 vld vmul

2 vld vadd

3 vst

• The sequence requires 3 convoys.

• Because the sequence takes 3 chimes and there are 2 fp

operations per result, the number of cycles per FLOP is

1.5

• This example shows that the chime approximation is

reasonably accurate for long vectors.
– For example, for 32-element vectors, the time in chimes is 3,

so the sequence would take about 32×3 or 96 clock cycles.

45

Challenges

• Most important source of overhead ignored by the

chime model is vector start-up time,
– which is the latency in clock cycles until the pipeline is

full.

• Start-up time is principally determined by the

pipelining latency of the vector functional unit.
– For RV64V, same pipeline depths as the Cray-1 will be

assumed.
• All functional units are fully pipelined.

• Pipeline depths are
– 6 clock cycles for fp add,

– 7 for fp multiply,

– 20 for fp divide,

– 12 for vector load.

46

Improvements

• Optimizations that either improve the performance

or increase the types of programs that can run well

on vector architectures:

• How can a vector processor execute a single vector

faster than one element per clock cycle?
– Multiple elements per clock cycle improve performance.

• How does a vector processor handle programs

where the vector lengths are not the same as the

maximum vector length (mvl)?
– Because most application vectors don’t match the

architecture vector length, we need an efficient solution

to this common case.
47

Improvements

• What happens when there is an IF statement inside the code to

be vectorized?
– More code can vectorize if we can efficiently handle conditional

statements.

• What does a vector processor need from the memory system?
– Without sufficient memory bandwidth, vector execution can be futile.

• How does a vector processor handle multiple dimensional

matrices?
– This popular data structure must vectorize for vector architectures to do

well.

• How does a vector processor handle sparse matrices?
– This popular data structure must vectorize also.

• How do you program a vector computer?
– Architectural innovations that are a mismatch to programming languages

and their compilers may not get widespread use.

48

9

Multiple Lanes

• A critical advantage of a vector instruction set
– allows software to pass a large amount of parallel work to

hardware using only a single short instruction.
• One vector instruction can include scores of independent operations

yet be encoded in the same number of bits as a conventional scalar

instruction.

• The parallel semantics of a vector instruction allow an

implementation to execute these elemental operations

using a deeply pipelined functional unit,
– an array of parallel functional units; or a combination of

parallel and pipelined functional units.

• Next figure illustrates how to improve vector

performance by using parallel pipelines to execute a

vector add instruction.
49

Multiple Lanes
• Using multiple functional units to improve the performance of a single vector add

instruction, C=A+B.
• The vector processor

(A) on the left has a
single add pipeline and
can complete one
addition per clock
cycle.

• The vector processor
(B) on the right has
four add pipelines and
can complete four
additions per clock
cycle.

• The elements within a
single vector add
instruction are
interleaved across the
four pipelines.

• The set of elements that
move through the
pipelines together is
termed an element
group.

50

Multiple Lanes

• In RV64V instruction set, all vector arithmetic
instructions only allow element N of one vector
register to take part in operations with element N
from other vector registers.
– This dramatically simplifies the design of a highly

parallel vector unit, which can be structured as multiple
parallel lanes.

– As with a traffic highway, we can increase the peak
throughput of a vector unit by adding more lanes.

• Next figure shows the structure of a four-lane
vector unit.
– Thus going to four lanes from one lane reduces the

number of clocks for a chime from 32 to 8.

51

Multiple Lanes

• Vector register

memory is divided

across the lanes,

with each lane

holding every fourth

element of each

vector register.

• Three vector

functional units:
– an FP add,

– an FP multiply,

– a load-store unit.

• Each of the vector

arithmetic units

contains four

execution pipelines,

one per lane, which

act in concert to

complete a single

vector instruction.

52

Vector-Length Registers:

Handling Loops Not Equal to 32

• A vector register processor has a natural vector

length determined by the maximum vector

length (mvl) (32 in the example above).

• In a real program, the length of a particular

vector operation is unknown at compile time.
– In fact, a single piece of code may require different

vector lengths.

• For example, consider the following code:

for (i = 0; i < n; i = i + 1)

Y[i] = a * X[i] + Y[i];

53

Vector-Length Registers

• Solution to these problems is to add a vector-

length register (vl).
– The vl controls the length of any vector operation,

including a vector load or store.
• The value in the vl cannot be greater than the mvl.

• This solves the problem as long as the real length is

less than or equal to the maximum vector length (mvl).

• This parameter means the length of vector registers can

grow in later computer generations without changing

the instruction set.

54

10

Vector Length Register

• RV64V code for vector DAXPY for any value of n.

vsetdcfg 2 DP FP # Enable 2 64b Fl.Pt. registers

fld f0 , a # Load scalar a

loop: setvl t0 ,a0 # vl = t0 = min(mvl,n)

vld v0 , x5 # Load vector X

slli t1 , t0 , 3 # t1 = vl * 8 (in bytes)

add x5 , x 5, t1 # Increment pointer to X by vl*8

vmul v0 , v0 , f0 # Vector-scalar mult

vld v1 , x6 # Load vector Y

vadd v1 , v0 , v1 # Vector-vector add

sub a0 , a0 , t0 # n -= vl (t0)

vst v1 , x6 # Store the sum into Y

add x6 , x6 , t1 # Increment pointer to Y by vl*8

bnez a0 , loop # Repeat if n != 0

vdisable # Disable vector regs}

55

Predicate Registers:

Handling IF Statements in Vector Loops

• Main reasons for lower levels of vectorization:
– presence of conditionals (IF statements) inside loops
– use of sparse matrices

• Programs that contain IF statements in loops
cannot be run in vector mode because
– IF statements introduce control dependences into a

loop.

• Consider the following loop written in C:
for (i = 0; i < 64; i = i + 1)

if (X[i] != 0)
X[i] = X[i] – Y[i];

– This loop cannot normally be vectorized because of
the conditional execution of the body

56

Predicate Registers:

Handling IF Statements in Vector Loops

• However, if the inner loop could be run for the iterations for

which X[i]  0, then the subtraction could be vectorized.
– The common extension for this capability is vector-mask control.

• In RV64V, predicate registers hold the mask and essentially provide conditional

execution of each element operation in a vector instruction.

• Predicate registers are configured and can be disabled.
– Enabling a predicate register initializes it to all 1 s,

– meaning that subsequent vector instructions operate on all vector elements.

• Following code can be used for the previous loop, assuming that the starting addresses

of X and Y are in x5 and x6, respectively:

vsetdcfg 2*FP64 # Enable 2 64b FP vector regs

vsetpcfgi 1 # Enable 1 predicate register

vld v0 , x5 # Load vector X into v0

vld v1 , x6 # Load vector Y into v1

fmv.d.x f0 , x0 # Put (FP) zero into f0

vpne p0 , v0 , f0 # Set p0(i) to 1 if v0(i)!=f0

vsub v0 , v0 , v1 # Subtract under vector mask

vst v0 , x5 # Store the result in X

vdisable # Disable vector registers

vpdisable # Disable predicate registers

57

Predicate Registers

• Using a vector-mask register does have overhead.
– With scalar architectures, conditionally executed

instructions still require execution time when the
condition is not satisfied.

• Elimination of a branch and the associated control
dependences can make a conditional instruction
faster even if it sometimes does useless work.

• Vector instructions executed with a vector mask
still take the same execution time, even for the
elements where the mask is zero.
– Despite a significant number of zeros in the mask, using

vector-mask control may still be significantly faster than
using scalar mode.

58

Memory Banks:

Supplying Bandwidth for Vector Load/Store Units

• Behavior of load/store vector unit is
significantly more complicated than that of the
arithmetic functional units.

• Start-up time for a load is the time to get the
first word from memory into a register.
– If the rest of the vector can be supplied without

stalling, then the vector initiation rate is equal to the
rate at which new words are fetched or stored.

• Unlike simpler functional units, the initiation
rate may not necessarily be 1 clock cycle
because memory bank stalls can reduce
effective throughput.

59

Memory Banks

• Memory system must be designed to support

high bandwidth for vector loads and stores

• Spreading accesses across multiple independent

memory banks usually delivers the desired rate

• To maintain an initiation rate of one word

fetched or stored per clock cycle, the memory

system must be capable of producing or

accepting this much data.

• Having significant numbers of banks is useful

for dealing with vector loads or stores that

access rows or columns of data.
60

11

Memory Banks

• Most vector processors use memory banks, which allow
several independent accesses rather than simple memory
interleaving for three reasons:
– Many vector computers support many loads or stores per clock

cycle, and the memory bank cycle time is usually several times
larger than the processor cycle time.

• To support simultaneous accesses from multiple loads or stores, the
memory system needs multiple banks and needs to be able to control the
addresses to the banks independently.

– Most vector processors support the ability to load or store data
words that are not sequential.

• In such cases, independent bank addressing, rather than interleaving, is
required.

– Most vector computers support multiple processors sharing the
same memory system, so each processor will be generating its
own separate stream of addresses.

• In combination, these features lead to the desire for a large
number of independent memory banks, as the following
example shows.

61

Example (Cray T90)

• Cray T932 has 32 processors, each capable of
generating 4 loads and 2 stores per clock cycle.
– Processor clock cycle is 2.167 ns,
– Cycle time of the SRAMs used for the memory system is 15

ns.

• Calculate the minimum number of memory banks
required to allow all processors to run at the full
memory bandwidth.

• Answer
– The maximum number of memory references each cycle:

• 32 processors × 6 references per processor = 192

– Each SRAM bank is busy for 15/2.167 = 6.92 clock cycles,
• which is rounded up to 7 processor clock cycles.

– Therefore we require a minimum of 192×7 = 1344 memory
banks!

62

Stride:

Handling Multidimensional Arrays in Vector Architectures

• Load/store units move groups of data between vector

registers and memory

• The distance separating elements to be gathered into a single

vector register is called the stride

• Three types of stride addressing
– Unit stride

• Contiguous (sequential) block of information in memory

• Fastest : always possible to optimize this

– Non unit (constant) stride
• Harder to optimize memory system for all possible strides

• Prime number of data banks makes it easier to support different strides at

full bandwidth

– Indexed (gather scatter)
• Vector equivalent of register indirect

• Good for sparse arrays of data

• Increases number of programs that vectorize

63

Stride:

Handling Multidimensional Arrays in Vector Architectures

• The position in memory of adjacent elements in

a vector may not be sequential.

• Consider this straightforward code for matrix

multiply in C:

for (i = 0; i < 100; i = i + 1)

for (j = 0; j < 100; j = j + 1) {

A[i][j] = 0.0;

for (k = 0; k < 100; k = k + 1)

A[i][j] = A[i][j] + B[i][k] * D[k][j];

}

64

Stride:

Handling Multidimensional Arrays in Vector Architectures

• We could vectorize the multiplication of each row
of B with each column of D and strip-mine the
inner loop with k as the index variable.
– To do so, we must consider how to address adjacent

elements in B and adjacent elements in D.
• When an array is allocated memory, it is linearized and must

be laid out in either row-major order (as in C) or column-major
order (as in Fortran).

• This linearization means that either the elements in the row or
the elements in the column are not adjacent in memory.

– For example, the preceding C code allocates in row-
major order, so the elements of D that are accessed by
iterations in the inner loop are separated by the row size
times 8 (the number of bytes per entry) for a total of 800
bytes

65

Stride:

Handling Multidimensional Arrays in Vector Architectures

• This distance separating elements to be gathered

into a single vector register is called the stride.
– In the example, matrix D has a stride of 100 double

words (800 bytes), and matrix B would have a stride of

1 double word (8 bytes).

• For column-major order, which is used by Fortran,

the strides would be reversed.
– Matrix D would have a stride of 1, while matrix B

would have a stride of 100

• Thus, without reordering the loops, the compiler

can’t hide the long distances between successive

elements for both B and D.

66

12

Stride:

Handling Multidimensional Arrays in Vector Architectures

• Once a vector is loaded into a vector register, it

acts as if it had logically adjacent elements.

• Thus a vector processor can handle strides

greater than one, called nonunit strides, using

only vector load and vector store operations

with stride capability.

– This ability to access nonsequential memory

locations and to reshape them into a dense structure

is one of the major advantages of a vector

architecture.

67

Stride:

Handling Multidimensional Arrays in Vector Architectures

• Supporting strides greater than one complicates the

memory system.

• Once non-unit strides are introduced, it becomes possible

to request accesses from the same bank frequently.

• When multiple accesses contend for a bank, a memory

bank conflict occurs, thereby stalling one access.

• A bank conflict and thus a stall will occur if

Number of banks

Least common multiple (Stride, Number of banks)
< Bank busy time

68

Example

• Suppose we have 8 memory banks with a bank busy time of 6

clocks and a total memory latency of 12 cycles.

• How long will it take to complete a 64-element vector load with

a stride of 1? With a stride of 32?
• Answer

– Because the number of banks is larger than the bank busy time, for

a stride of 1, the load will take 12+64=76 clock cycles, or
• 1.2 clock cycles per element.

– The worst possible stride is a value that is a multiple of the

number of memory banks, as in this case with a stride of 32 and 8

memory banks.

– Every access to memory (after the first one) will collide with the

previous access and will have to wait for the 6-clock-cycle bank

busy time.

– The total time will be 12+1+6 * 63=391 clock cycles, or
• 6.1 clock cycles per element, slowing it down by a factor of 5!

69

Gather-Scatter:

Handling Sparse Matrices in Vector Architectures

• Important to have techniques to allow programs

with sparse matrices to execute in vector mode.
– In a sparse matrix, the elements of a vector are usually

stored in some compacted form and then accessed

indirectly.

• Assuming a simplified sparse structure, we might

see code that looks like this:
for (i = 0; i < n; i = i + 1)

A[K[i]] = A[K[i]] + C[M[i]];

• This code implements a sparse vector sum on the

arrays A and C, using index vectors K and M to

designate the nonzero elements of A and C.

70

Gather-Scatter:

Handling Sparse Matrices in Vector Architectures

• The primary mechanism for supporting sparse matrices is

gather-scatter operations using index vectors.
– Goal is to support moving between a compressed

representation and normal representation of a sparse matrix.

• A gather operation takes an index vector and fetches the

vector whose elements are at the addresses given by

adding a base address to the offsets given in the index

vector.
– The result is a dense vector in a vector register.

• After these elements are operated on in a dense form, the sparse
vector can be stored in an expanded form by a scatter store, using the
same index vector.

• Hardware support for such operations is called gather-
scatter, and it appears on nearly all modern vector
processors.

71

Gather-Scatter:

Handling Sparse Matrices in Vector Architectures

• The RV64V instructions are vldi (load vector indexed or gather) and

vsti (store vector indexed or scatter).
– For example, if x5, x6, x7, and x28 contain the starting addresses of the vectors

in the previous sequence, we can code the inner loop with vector instructions

such as:

vsetdcfg 4*FP64 # 4 64b FP vector registers

vld v0 , x7 # Load K[]

vldx v1 , x5 , v0) # Load A[K[]]

vld v2 , x28 # Load M[]

vldi v3 , x6 , v2) # Load C[M[]]

vadd v1 , v1 , v3 # Add them

vstx v1 , x5 , v0) # Store A[K[]]

vdisable # Disable vector registers

• This technique allows code with sparse matrices to run in vector

mode.

• A simple vectorizing compiler could not automatically vectorize the

preceding source code because the compiler would not know that the

elements of K are distinct values, and thus that no dependences exist.

72

13

SIMD Instruction Set Extensions for Multimedia

• SIMD MMX started with observation that
– many media applications operate on narrower data types

than the 32-bit processors were optimized for.

• Graphics systems would use
– 8 bits to represent each of the three primary colors plus

8 bits for transparency.

• Audio samples are usually represented with 8 or 16
bits.

• By partitioning the carry chains within, say, a 256-
bit adder, a processor could perform simultaneous
operations on short vectors of 32 8-bit operands, 16
16-bit operands, 8 32-bit operands, or 4 64-bit
operands.

73

SIMD Instruction Set Extensions for Multimedia

• Typical multimedia SIMD instructions

• In contrast to vector architectures, SIMD

extensions have three major omissions, which

make it harder for the compiler to generate

SIMD code and increase the difficulty of

programming in SIMD assembly language.
74

SIMD Instruction Set Extensions for Multimedia

– MM SIMD extensions fix the number of data operands

in the opcode,
• which has led to the addition of hundreds of instructions in the

MMX, SSE, and AVX extensions of the x86 architecture.

• Vector architectures have a vector-length register that specifies

the number of operands for the current operation.

– MM SIMD did not offer the more sophisticated

addressing modes of vector architectures (strided

accesses and gather-scatter accesses).
• These features increase the number of programs that a vector

compiler can successfully vectorize

– MM SIMD usually did not offer the mask registers to

support conditional execution of elements as in vector

architectures

75

SIMD Instruction Set Extensions for Multimedia

• For the x86 architecture,
– MMX instructions added in 1996 repurposed the 64-bit

floating-point registers,
• so the basic instructions could perform 8 8-bit operations or 4

16-bit operations simultaneously.

– Streaming SIMD Extensions (SSE) successor in 1999
added 16 separate registers (XMM registers) that were
128 bits wide,

• so now instructions could simultaneously perform 16 8-bit
operations, 8 16-bit operations, or 4 32-bit operations.

– Advanced Vector Extensions (AVX), added in 2010,
doubled the width of the registers to 256 bits (YMM
registers) and thereby offered

• instructions that double the number of operations on all
narrower data types

76

SIMD Instruction Set Extensions for Multimedia

• AVX instructions for x86 architecture useful in double-precision

floating-point programs.

• Packed-double for 256-bit AVX means four 64-bit operands executed in SIMD mode.

• AVX includes instructions that shuffle 32-bit, 64-bit, or 128-bit operands within a

256-bit register.
– For example, BROADCAST replicates a 64-bit operand four times in an AVX register.

• AVX also includes a large variety of fused multiply-add/subtract instructions

77

SIMD Instruction Set Extensions for Multimedia

• Why are MM SIMD extensions so popular?
– they initially cost little to add to the standard arithmetic

unit and they were easy to implement
– they require scant extra processor state compared to

vector architectures
– a lot of memory bandwidth is needed to support a vector

architecture, which many computers don’t have
– SIMD does not have to deal with problems in virtual

memory when a single instruction can generate 32
memory accesses and any of which can cause a page
fault

• original SIMD extensions used separate data transfers per
SIMD group of operands that are aligned in memory, and so
they cannot cross page boundaries

78

14

Example SIMD Code

• This example shows RISC-V SIMD code for the DAXPY loop,

with the changes to the RISC-V code for SIMD underlined.
– Starting addresses of X and Y are in x5 and x6, respectively.

fld f0 , a # Load scalar a

splat .4D f0 , f0 # Make 4 copies of a

addi x28 , x5 , #256 # Last address to load

Loop: fld.4D f1 , 0(x5) # Load X[i] ... X[i+3]

fmul.4D f1 , f1 , f0 # a x X[i] ... a x X[i+3]

fld.4D f2 , 0(x6) # Load Y[i] ... Y[i+3]

fadd.4D f2 , f2 , f1 # a x X[i]+Y[i]...

a x X[i+3]+Y[i+3]

fsd.4D f2 , 0(x6) # Store Y[i]... Y[i+3]

addi x5 , x5 , #32 # Increment index to X

addi x6 , x6 , #32 # Increment index to Y

bne x28 , x5 , Loop # Check if done

79

Programming Multimedia SIMD Architectures

• Easiest way to use SIMD MMX instructions has been

through libraries or by writing in assembly language.

• Recent extensions have become more regular, giving

compilers a more reasonable target.
– By borrowing techniques from vectorizing compilers,

compilers are starting to produce SIMD instructions

automatically.

– For example, advanced compilers today can generate SIMD

fp instructions to deliver much higher performance for

scientific codes.
• However, programmers must be sure to align all the data in memory

to the width of the SIMD unit on which the code is run to prevent the

compiler from generating scalar instructions for otherwise

vectorizable code.

80

Roofline Visual Performance Model

• Roofline model
– Visual, intuitive way to compare potential floating-point

performance of variations of SIMD architectures

– horizontal and diagonal lines of the graphs it produces give

this simple model its name and indicate its value

– It ties together floating-point performance, memory

performance, and arithmetic intensity in a two-dimensional

graph.

• Arithmetic intensity
– The ratio of fp operations per byte of memory accessed.

• can be calculated by taking the total number of fp operations for a

program divided by the total number of data bytes transferred to main

memory during program execution.

81

Roofline Visual Performance Model

• Following figure shows the relative arithmetic intensity

of several example kernels.

• Arithmetic intensity, specified as the number of fp operations to

run the program divided by the number of bytes accessed in

main memory
– Some kernels have an arithmetic intensity that scales with problem size,

such as a dense matrix, but there are many kernels with arithmetic

intensities independent of problem size.
82

Roofline Model Examples

• The “Roofline” sets an upper bound on performance of

a kernel depending on its arithmetic intensity.
– Y axis: attainable fp performance (GFLOPs/sec)

Attainable GFLOPs/sec = (Peak Memory BW × Arithmetic Intensity,

Peak Floating Point Perf.)

– X axis: arithmetic intensity (1/8 to 16 FLOP/DRAM byte

accessed)

83

Comparisons on Roofline Models

• The dashed vertical lines at an arithmetic intensity of 4

FLOP/byte:
– The SX-9 at 102.4 FLOP/s is 2.4 faster than the Core i7 at 42.66 GFLOP/s.

• At an arithmetic intensity of 1/4 FLOP/byte:
– The SX-9 at 40.5 GFLOP/s is 10 faster than the Core i7 at 4.1 GFLOP/s.

84

15

Roofline Visual Performance Model

• How could we plot the peak memory performance?

• Because the X-axis is FLOP/byte and the Y-axis is

FLOP/s, bytes/s is just a diagonal line at a 45-degree

angle in the figure.
– Thus we can plot a third line that gives the maximum fp

performance that the memory system of that computer can

support for a given arithmetic intensity.

• We can express the limits as a formula to plot these

lines in the graphs in previous slide

Attainable GFLOPs/s = Min (Peak Memory BW

× Arithmetic Intensity, Peak fp Perf.)

• Roofline sets an upper bound on performance of a

kernel depending on its arithmetic intensity.
85

Graphics Processing Units

• A highly parallel, highly multithreaded multiprocessor

optimized for visual computing.
– GPU generates 2D and 3D graphics, images, and video that

enable window based operating systems, graphical user

interfaces, video games, visual imaging applications, and

video

• To provide real-time visual interaction with computed

objects via graphics, images, and video, the GPU has a

unified graphics and computing architecture that serves

as both a programmable graphics processor and a

scalable parallel computing platform.

• PCs and game consoles combine a GPU with a CPU to

form heterogeneous systems.

86

Graphics Processing Units

• Graphics Processing Unit (GPU)

– A processor optimized for 2D and 3D graphics,

video, visual computing, and display.

• Visual computing

– A mix of graphics processing and computing that

lets you visually interact with computed objects via

graphics, images, and video.

• Heterogeneous system

– A system combining different processor types.

• A PC is a heterogeneous CPU–GPU system.

87

A Brief History of GPU Evolution

• Graphics on a PC were performed by a Video
Graphics Array (VGA) controller (20 years ago)
– a memory controller and display generator connected to

some DRAM

• 1990s, more functions could be added to the VGA
controller

• By 1997, incorporate some three-dimensional (3D)
acceleration functions

• In 2000, single chip graphics processor
incorporated almost every detail of the traditional
high-end workstation graphics pipeline
– The term GPU was coined to denote that the graphics

device had become a processor

88

GPU Graphics Trends

• GPUs and their associated drivers implement the
OpenGL and DirectX models of graphics
processing.
– OpenGL is an open standard for 3D graphics

programming available for most computers.
– DirectX is a series of Microsoft multimedia

programming interfaces.

• Since these APIs have well-defined behavior, it is
possible to build effective hardware acceleration of
the graphics processing functions defined by the
APIs.
– API (Application Programming Interface)

• A set of function and data structure definitions providing an
interface to a library of functions.

89

GPU Evolves into Scalable Parallel Processor

• GPUs have evolved functionally from

hardwired, limited capability VGA controllers

to programmable parallel processors

• This evolution has proceeded by changing the

logical (API-based) graphics pipeline to

incorporate programmable elements and also by

making the underlying hardware pipeline stages

less specialized and more programmable.

• Disparate programmable pipeline elements

merged into one unified array of many

programmable processors
90

16

CUDA and GPU Computing

• GPU computing
– Using a GPU for computing via a parallel

programming language and API.

• GPGPU (General Purpose Computation on

GPU)
– Using a GPU for general-purpose computation via a

traditional graphics API and graphics pipeline.

• CUDA (Compute Unified Device Architecture)
– A scalable parallel programming model and

language based on C/C++.

– It is a parallel programming platform for GPUs and

multicore CPUs.
91

Compute Unified Device Architecture

• CUDA programming model has an SPMD

(Single-Program Multiple Data) software style,

in which a programmer writes a program for

one thread that is instanced and executed by

many threads in parallel on the multiple

processors of the GPU.

• CUDA also provides a facility for programming

multiple CPU cores as well,
– so CUDA is an environment for writing parallel

programs for the entire heterogeneous computer

system.

92

GPU System Architectures

• The Historical PC (circa 1990)

• North bridge contains
high-bandwidth
interfaces, connecting
the CPU, memory, and
PCI bus.

• South bridge contains
legacy interfaces and
devices:

• ISA bus (audio, LAN),
interrupt controller;
DMA controller;
time/counter.

• The display was driven by a simple frame buffer subsystem
known as a VGA which was attached to the PCI bus

93

GPU System Architectures

• Contemporary PCs with Intel and AMD CPUs
– Characterized by a separate GPU (discrete GPU)

and CPU with respective memory subsystems.

94

Many-core GPU architecture

• A single core (streaming
multiprocessor, SMX)
– L1 cache, Read only cache,

texture units
– 6 32-wide SIMD units (192 total,

single precision)
– Up-to 64 warps simultaneously

(hardware warps)
• Like hyper-threading, but a warp is

32-wide SIMD

• Optimal number of FLOPS per
clock cycle:
– 32x: 32-way SIMD
– 2x: Fused multiply add
– 6x: 6 SIMD units per core
– 15x: 15 cores
– Sum: 5760!

95

Simplified schematic of GPU design

Massive Parallelism

• Up-to 5760 floating point operations in parallel!

• 5-10 times as power efficient as CPUs!

96

17

GPU System Architectures

• Basic unified GPU architecture

97

GPU System Architectures

• 112 streaming processor (SP) cores
– organized in 14 streaming multiprocessors (SMs);

– the cores are highly multithreaded.

• It has the basic Tesla architecture of an

NVIDIA GeForce 8800.
– The processors connect with 4 64-bit-wide DRAM

partitions via an interconnection network.

– Each SM has 8 SP cores, 2 special function units

(SFUs), instruction and constant caches, a

multithreaded instruction unit, and a shared

memory.

98

Programming the GPU

• Challenges for the GPU programmer:
– getting good performance on the GPU

– coordinating the scheduling of computation on the system processor and

the GPU

– transfer of data between system memory and GPU memory

• GPUs have virtually every type of parallelism that can be captured by

the programming environment:
– multithreading, MIMD, SIMD, and even instruction-level

• NVIDIA develop a C-like language and programming environment

that would improve the productivity of GPU programmers:
– CUDA (Compute Unified Device Architecture)

• CUDA produces C/C++ for the system processor (host) and a C and C++ dialect

for the GPU

• A similar programming language is OpenCL, which several

companies are developing to offer a vendor-independent language for

multiple platforms

99

Programming the GPU

• GPU Programming Languages

100

Threads and Blocks

• NVIDIA decided that the unifying theme of all

these forms of parallelism is the CUDA Thread
– A thread is associated with each data element

– Threads are organized into blocks (Thread Block)

– Blocks are organized into a grid

• GPU hardware handles thread management, not

applications or OS

• Hardware that executes a whole block of threads is

called multithreaded SIMD Processor

• NVIDIA classifies the CUDA programming model

as single instruction, multiple thread (SIMT)

101

Grids and blocks in CUDA

• Two-layered parallelism
– A block consists of threads:

• Threads within the
same block can
cooperate and
communicate

– A grid consists of
blocks:

• All blocks run
independently.

– Blocks and grid can be 1D, 2D, and 3D

• Global synchronization and communication is
only possible between kernel launches
– Expensive, and should be avoided if possible

102

18

Programming the GPU

• Computing y = ax + y with a serial loop
(conventional C code for the DAXPY loop):

// Invoke DAXPY
daxpy(n, 2.0, x, y);
// DAXPY in C
void daxpy(int n, double a, double *x, double *y)
{

for (int i = 0; i < n; ++i)
y[i] = a*x[i] + y[i];

}

• has a loop where each iteration is independent from the
others,
– allowing the loop to be transformed straightforwardly into a

parallel code where each loop iteration becomes a separate thread.

103

Programming the GPU

• Computing y = ax + y in parallel using CUDA:

// Invoke DAXPY with 256 threads per Thread Block
__host__
int nblocks = (n+ 255) / 256;

daxpy<<<nblocks, 256>>>(n, 2.0, x, y);
// DAXPY in CUDA
__global__
void daxpy(int n, double a, double *x, double *y)
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];

}

• n threads, one per vector element, with 256 CUDA Threads per Thread Block
in a multithreaded SIMD Processor.

• GPU function starts by calculating the corresponding element index i based
on the block ID, the number of threads per block, and the thread ID.

– As long as this index is within the array (i < n), it performs the multiply and add.

104

Example: Adding two matrices in CUDA

• We want to add two
matrices, a and b,
and store the result in c.

• For best performance, loop through one row at a time
(sequential memory access pattern)

void addFunctionCPU(float* c, float* a, float* b,
unsigned int cols, unsigned int rows) {

for (unsigned int j=0; j<rows; ++j) {
for (unsigned int i=0; i<cols; ++i) {

unsigned int k = j*cols + i;
c[k] = a[k] + b[k];

}
}

}
105

Example: Adding two matrices in CUDA

__global__ void addMatricesKernel(float* c, float* a, float* b, GPU
unsigned int cols, unsigned int rows) { function

//Indexing calculations Indices
unsigned int global_x = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int global_y = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int k = global_y*cols + global_x;

//Actual addition
c[k] = a[k] + b[k];

}

void addFunctionGPU(float* c, float* a, float* b,
unsigned int cols, unsigned int rows) {

dim3 block(8, 8); Run on GPU
dim3 grid(cols/8, rows/8);
... //More code here: Allocate data on GPU, copy CPU data to GPU
addMatricesKernel<<<grid, block>>>(gpu_c, gpu_a, gpu_b, cols, rows);
... //More code here: Download result from GPU to CPU

}

106

Implicit double for loop

for (int blockIdx.x = 0;

blockIdx.x < grid.x;

blockIdx.x) { …

NVIDIA GPU Architecture

• Similarities to vector machines:
– Works well with data-level parallel problems

– Scatter-gather transfers

– Mask registers

– Large register files

• Differences:
– No scalar processor

– Uses multithreading to hide memory latency

– Has many functional units, as opposed to a few

deeply pipelined units like a vector processor

107

Example

• Code that works over all elements is the grid

• Thread blocks break this down into manageable sizes
– 512 threads per block

• SIMD instruction executes 32 elements at a time

• Thus grid size = 16 blocks

• Block is analogous to a strip-mined vector loop with vector

length of 32

• Block is assigned to a multithreaded SIMD processor by the

thread block scheduler

• Current-generation GPUs have 7-15 multithreaded SIMD

processors

108

19

Quick guide to GPU terms

109

Quick guide to GPU terms

110

Terminology

• A Grid is the code that runs on a GPU that consists of a set of Thread Blocks.

• Each thread is limited to 64 registers

• Groups of 32 threads combined into a SIMD thread or “warp”
– Mapped to 16 physical lanes

• Up to 32 warps are scheduled on a single SIMD processor
– Each warp has its own PC

– Thread scheduler uses scoreboard to dispatch warps

– By definition, no data dependencies between warps

– Dispatch warps into pipeline, hide memory latency

• Thread block scheduler schedules blocks to SIMD processors

• Within each SIMD processor:
– 32 SIMD lanes

– Wide and shallow compared to vector processors

111

Example

• Mapping of a Grid (vectorizable loop),

Thread Blocks (SIMD basic blocks), and

threads of SIMD instructions to a vector-

vector multiply, with each vector being 8192

elements long.

• Each thread of SIMD instructions calculates

32 elements per instruction,

• Each Thread Block contains 16 threads of

SIMD instructions and the Grid contains 16

Thread Blocks.

• The hardware Thread Block Scheduler

assigns Thread Blocks to multithreaded

SIMD Processors, and the hardware Thread

Scheduler picks which thread of SIMD

instructions to run each clock cycle within a

SIMD Processor.

• Only SIMD Threads in the same Thread

Block can communicate via local memory.
– The maximum number of SIMD Threads that can execute

simultaneously per Thread Block is 32 for Pascal GPUs.

112

GPU Organization

113

Simplified block diagram of

a multithreaded SIMD

Processor

Pascal P100 GPU

• Full-chip block diagram of the Pascal P100 GPU

114

20

Pascal P100 GPU

• It has 56 multithreaded SIMD Processors,
– each with an L1 cache and local memory,

• 32 L2 units, and a memory-bus width of 4096

data wires.
– It has 60 blocks, with four spares to improve yield.

• The P100 has 4 HBM2 ports supporting up to

16 GB of capacity.

• It contains 15.4 billion transistors.

115

Scheduling of threads of SIMD instructions

• The scheduler selects a

ready thread of SIMD

instructions and issues an

instruction synchronously to

all the SIMD Lanes

executing the SIMD Thread.

• Because threads of SIMD

instructions are

independent, the scheduler

may select a different SIMD

Thread each time.

116

NVIDIA Instruction Set Arch.

• ISA is an abstraction of the hardware instruction set
– Parallel Thread Execution (PTX)

• provides a stable instruction set for compilers

• as compatibility across generations of GPUs.

• Format of a PTX instruction is
– opcode.type d,a,b,c;

• where d is the destination operand; a, b, and c are source operands;

• operation type is one of the following:

117

NVIDIA Instruction Set Arch.

– Uses virtual registers
– Translation to machine code is performed in software

• Example:
– Following sequence of PTX instructions is for one iteration of

DAXPY

shl.s32 R8, blockIdx, 9 ; Thread Block ID * Block size (512 or 29)
add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID
ld.global.f64 RD0, [X+R8] ; RD0 = X[i]
ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]
mul.f64 R0D, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)
add.f64 R0D, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])
st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])

• CUDA programming model assigns one CUDA Thread to
each loop iteration and offers a unique identifier number to
each Thread Block (blockIdx) and one to each CUDA
Thread within a block (threadIdx).

118

Conditional Branching

• Like vector architectures, GPU branch hardware uses internal

masks

• Also uses
– Branch synchronization stack

• Entries consist of masks for each SIMD lane

• I.e. which threads commit their results (all threads execute)

– Instruction markers to manage when a branch diverges into multiple

execution paths
• Push on divergent branch

– …and when paths converge
• Act as barriers

• Pops stack

• Per-thread-lane 1-bit predicate register, specified by

programmer

119

Example

• The code for a conditional statement
if (X[i] != 0)

X[i] = X[i] – Y[i];

else X[i] = Z[i];

• This IF statement could compile to the following PTX

instructions:
ld.global.f64 RD0, [X+R8] ; RD0 = X[i]

setp.neq.s32 P1, RD0, #0 ; P1 is predicate register 1

@!P1, bra ELSE1, *Push ; Push old mask, set new mask bits

; if P1 false, go to ELSE1

ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

sub.f64 RD0, RD0, RD2 ; Difference in RD0

st.global.f64 [X+R8], RD0 ; X[i] = RD0

@P1, bra ENDIF1, *Comp ; complement mask bits

; if P1 true, go to ENDIF1

ELSE1: ld.global.f64 RD0, [Z+R8] ; RD0 = Z[i]

st.global.f64 [X+R8], RD0 ; X[i] = RD0

ENDIF1: <next instruction>, *Pop ; pop to restore old mask

120

21

NVIDIA GPU Memory Structures

• Each SIMD Lane has private section of off-chip

DRAM
– “Private memory”

– Contains stack frame, spilling registers, and private

variables

• Each multithreaded SIMD processor also has

local memory
– Shared by SIMD lanes / threads within a block

• Memory shared by SIMD processors is GPU

Memory
– Host can read and write GPU memory

121

NVIDIA GPU Memory Structures

• GPU memory is
shared by all Grids
(vectorized loops),
local memory is
shared by all threads
of SIMD
instructions within a
Thread Block (body
of a vectorized
loop), and private
memory is private to
a single CUDA
Thread.

• Pascal allows
preemption of a
Grid, which requires
that all local and
private memory be
able to be saved in
and restored from
global memory.

122

• Each SIMD processor has
– Two or four SIMD thread schedulers, two instruction dispatch

units
– 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store

units, 4 special function units
– Two threads of SIMD instructions are scheduled every two clock

cycles

• Four main innovations
– of Pascal:Fast single-, double-, and half-precision fp arithmetic

• Single precision fp of the GPU runs at a peak of 10 TeraFLOP/s.
• Double-precision is roughly half-speed at 5 TeraFLOP/s,
• half-precision is about double-speed at 20 TeraFLOP/s when expressed as 2-

element vectors

– High Bandwith Memory (HBM2)
• wide bus (4096 data wires running at 0.7 GHz, peak bandwidth of 732 GB/s)

– High-speed chip-to-chip interconnect
• NVLink between multiple GPUs (20 GB/s in each direction)

– Unified virtual memory and paging support

123

Pascal Architecture Innovations

124

Pascal Multithreaded SIMD Proc.

• Both architectures are designed to execute data-level parallel

programs

• Multiple SIMD Processors in GPUs act as independent MIMD

cores, just as many vector computers have multiple vector

processors

• Multithreading is fundamental to GPUs, but missing from most

vector processors

• Registers
– RV64V register file holds entire vectors, GPU distributes vectors across

the registers of SIMD lanes

– RV64 has 32 vector registers of 32 elements (1024), GPU has 256

registers with 32 elements each (8192), supporting multithreading

– RV64 has 2 to 8 lanes with vector length of 32, chime is 4 to 16 cycles, a

multithreaded SIMD processor chime is 2 to 4 cycles

• The closest GPU term to a vectorized loop is Grid

125

Vector Architectures vs GPUs

• All GPU loads are gather instructions and all

GPU stores are scatter instructions

• GPUs have more SIMD lanes

• GPUs have hardware support for more threads

• Both have 2:1 ratio between double- and single-

precision performance

• Both have 64-bit addresses, but GPUs have

smaller memory

• SIMD architectures have no scatter-gather

support

126

SIMD Architectures vs GPUs

22

SIMD Architectures vs GPUs

• Similarities and differences between multicore with

multimedia SIMD extensions and recent GPUs

127

• Loops in programs are the fountainhead of many of the types of

parallelism

• Finding and manipulating loop-level parallelism is critical to

exploiting both DLP and TLP, as well as the more aggressive static

ILP approaches

• Loop-level parallelism is investigated at the source level or close to

it,
– while most analysis of ILP is done once instructions have been generated

by the compiler.

• Loop-level analysis involves determining what dependences exist

among the operands in a loop across the iterations of that loop.
– Data dependences arise when an operand is written at some point and

read at a later point.

– Name dependences also exist and may be removed by the renaming

techniques

128

Loop-Level Parallelism

• Analysis of loop-level parallelism focuses on

determining whether data accesses in later iterations

are dependent on data values produced in earlier

iterations;
– such dependence is called a loop-carried dependence.

• Example 1

for (i=999; i>=0; i=i-1)

x[i] = x[i] + s;

– Two uses of x[i] are dependent,
• this dependence is within a single iteration and is not loop-carried.

– There is a loop-carried dependence between successive uses

of i in different iterations,
• this dependence involves an induction variable that can be easily

recognized and eliminated.
129

Loop-Level Parallelism

• Example 2

• Consider a loop like this one:

for (i=0; i<100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */

B[i+1] = B[i] + A[i+1]; /* S2 */

}

• What are the data dependences among the

statements S1 and S2 in the loop?

130

Loop-Level Parallelism

• Answer:
for (i=0; i<100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */

B[i+1] = B[i] + A[i+1]; /* S2 */

}

• There are two different dependences:
– S1 uses a value computed by S1 in an earlier

iteration,
• because iteration i computes A[i+1], which is read in

iteration i+1.

• The same is true of S2 for B[i] and B[i+1].

– S2 uses the value A[i+1] computed by S1 in the

same iteration

131

Loop-Level Parallelism Loop-Level Parallelism

• These two dependences are distinct and have
different effects.

• Assuming that only one of these dependences
exists at a time,
– because the dependence of statement S1 is on an earlier

iteration of S1, this dependence is loop-carried.
– This dependence forces successive iterations of this loop

to execute in series.

• 2nd dependence is within an iteration and is not
loop-carried.
– Thus, if this were the only dependence, multiple

iterations of the loop would execute in parallel,
• as long as each pair of statements in an iteration were kept in

order.

132

23

• Example 3

• Consider a loop like this one:

for (i=0; i<100; i=i+1) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

• What are the dependences between S1 and S2?

• Is this loop parallel?

• If not, show how to make it parallel.

133

Loop-Level Parallelism

• Answer
for (i=0; i<100; i=i+1) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

• S1 uses value computed by S2 in previous

iteration
– so there is a loop-carried dependence between S2 and S1

• But dependence is not circular so loop is

parallel
– A loop is parallel if it can be written without a cycle in the

dependences because the absence of a cycle means that the

dependences give a partial ordering on the statements.
134

Loop-Level Parallelism

• Although there are no circular dependences in the preceding
loop, it must be transformed to conform to the partial ordering
and expose the parallelism
– There is no dependence from S1 to S2
– On the first iteration of the loop, statement S2 depends on the value of

B[0] computed prior to initiating the loop

• These two observations allow us to replace the preceding loop
with the following code sequence:

A[0] = A[0] + B[0];
for (i=0; i<99; i=i+1) {

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

}
B[100] = C[99] + D[99];

• The dependence between the two statements is no longer loop-
carried so that iterations of the loop may be overlapped,
provided the statements in each iteration are kept in order.

135

Loop-Level Parallelism

• Example 4
• Consider the following code:

for (i=0;i<100;i=i+1) {

A[i] = B[i] + C[i];

D[i] = A[i] * E[i];

}

• The second reference to A in this example need not be

translated to a load instruction because we know that

the value is computed and stored by the previous

statement.
– Thus the second reference to A can simply be a reference to

the register into which A was computed.

136

Loop-Level Parallelism

• Example 5
• Often loop-carried dependences are in the form of a

recurrence.
• A recurrence occurs when a variable is defined based on

the value of that variable in an earlier iteration, usually the
one immediately preceding,

• Consider the following code:
for (i=1;i<100;i=i+1) {

Y[i] = Y[i-1] + Y[i];
}

• Detecting a recurrence can be important for two reasons:
– some architectures (especially vector computers) have special

support for executing recurrences,
– in an ILP context, it may still be possible to exploit a fair amount

of parallelism.

137

Loop-Level Parallelism Finding dependencies

• Finding the dependences in a program is

important
– to determine which loops might contain parallelism

– to eliminate name dependences.

• The complexity of dependence analysis arises

also because of the presence of
– arrays and pointers in languages such as C or C++,

– pass-by-reference parameter passing in Fortran

• How does the compiler detect dependences in

general?
– Nearly all dependence analysis algorithms work on

the assumption that array indices are affine
138

24

• A one-dimensional array index is affine if it can

be written in the form:
– a × i + b (a and b are constants and i is loop index)

• Index of a multidimensional array is affine if the

index in each dimension is affine

• Assume:
– Stored to a × i + b, then

– Loaded from c × i + d
• where i is the for-loop index variable that runs from m to n

– Dependence exists if:
• Given j, k such that m ≤ j ≤ n, m ≤ k ≤ n

• Store to a × j + b, load from a × k + d, and a × j + b = c × k + d

139

Finding dependencies

• Generally cannot be determined at compile time

• A simple and sufficient test for the absence of a

dependence is the greatest common divisor

(GCD) test:

– It is based on the observation that if a loop-carried

dependence exists, then GCD(c, a) must divide (d – b).

• Recall that an integer, x, divides another integer, y, if we

get an integer quotient when we do the division y/x and

there is no remainder.

140

Finding dependencies

• Example:

• Use the GCD test to determine whether

dependences exist in the following loop:
for (i=0; i<100; i=i+1) {

X[2*i+3] = X[2*i] * 5.0;

}

• Answer

• Given the values a = 2, b =3, c = 2, and d = 0,

then GCD(a, c) = 2, and d – b = -3.

• Because 2 does not divide -3, no dependence is

possible.
141

Finding dependencies Finding dependencies

• The GCD test is sufficient to guarantee that no
dependence exists;
– however, there are cases where the GCD test succeeds

but no dependence exists.
• This can arise, for example, because the GCD test does not

consider the loop bounds.

• In general, determining whether a dependence
actually exists is NP-complete.

• In addition to detecting the presence of a
dependence, a compiler wants to classify the type
of dependence.
– This classification allows a compiler to recognize name

dependences and eliminate them at compile time by
renaming and copying.

142

Finding dependencies

• Example
• The following loop has multiple types of

dependences.
• Find all the true dependences, output dependences,

and antidependences, and eliminate the output
dependences and antidependences by renaming.

for (i=0; i<100; i=i+1) {
Y[i] = X[i] / c; /* S1 */
X[i] = X[i] + c; /* S2 */
Z[i] = Y[i] + c; /* S3 */
Y[i] = c - Y[i]; /* S4 */

}

143

Finding dependencies

• Answer
• The following dependences exist among the four

statements:
– There are true dependences from S1 to S3 and from S1

to S4 because of Y[i].
• These are not loop-carried, so they do not prevent the loop

from being considered parallel.
• These dependences will force S3 and S4 to wait for S1 to

complete.

– There is an antidependence from S1 to S2, based on
X[i].

– There is an antidependence from S3 to S4 for Y[i].
– There is an output dependence from S1 to S4, based on

Y[i].

144

25

Finding dependencies

• The following version of the loop eliminates

these false (or pseudo) dependences.

for (i=0; i<100; i=i+1 {

T[i] = X[i] / c; /* Y renamed to T to remove output

dependence */

X1[i] = X[i] + c; /* X renamed to X1 to remove

antidependence */

Z[i] = T[i] + c; /* Y renamed to T to remove

antidependence */

Y[i] = c - T[i];

}

145

• One of the most important forms of dependent computations is a

recurrence.
– A dot product is a perfect example of a recurrence:

for (i=9999; i>=0; i=i-1)

sum = sum + x[i] * y[i];

• This loop is not parallel
– because it has a loop-carried dependence on the variable sum

• Transform to…
for (i=9999; i>=0; i=i-1)

sum [i] = x[i] * y[i];

for (i=9999; i>=0; i=i-1)

finalsum = finalsum + sum[i];

• In 1st loop, sum has been expanded from a scalar into a vector quantity
– This transformation is called scalar expansion

• makes this new loop completely parallel.

• 2nd loop is the reduce step
– Although this loop is not parallel, it has a very specific structure called a reduction.

– Reductions are common in linear algebra
146

Eliminating Dependent Computations

• Reductions are sometimes handled by special hardware in a
vector and SIMD architecture that allows the reduce step to be
done much faster than it could be done in scalar mode.
– These work by implementing a technique similar to what can be done in

a multiprocessor environment.

• Suppose for simplicity we have 10 processors.
– In the first step of reducing the sum, each processor executes the

following (with p as the processor number ranging from 0 to 9):
for (i=999; i>=0; i=i-1)

finalsum[p] = finalsum[p] + sum[i+1000*p];

• This loop is completely parallel.
– A simple scalar loop can then complete the summation of the last 10

sums.

• Similar approaches are used in vector processors and SIMD
Processors.

• It is important to observe that the preceding transformation
relies on associativity of addition.

147

Eliminating Dependent Computations Fallacies and Pitfalls

• GPUs suffer from being coprocessors
– GPUs have flexibility to change ISA

• Concentrating on peak performance in vector architectures and

ignoring start-up overhead
– Overheads require long vector lengths to achieve speedup

• Increasing vector performance without comparable increases in

scalar performance

• You can get good vector performance without providing

memory bandwidth

• On GPUs, just add more threads if you don’t have enough

memory performance

148

