
Copyright 2000 N. AYDIN. All rights

reserved. 1

BLM6112

Advanced Computer Architecture
Memory Hierarchy

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

1

• Introduction

• Memory Hierarchy

• Cache Memory

• Cache Performance

• Main Memory

• Virtual Memory

• Translation Lookaside Buffer

• MIPS R4000 Case Study

Outline

2

Computer Memory Hierarchy

3

• Programmers want unlimited amounts of memory with low
latency

• Fast memory technology is more expensive per bit than slower
memory

• Solution:
– organize memory system into a hierarchy

• Entire addressable memory space available in largest, slowest memory

• Incrementally smaller and faster memories,
– each containing a subset of the memory below it, proceed in steps up toward the processor

• Temporal and spatial locality insures that nearly all references
can be found in smaller memories
– Gives the allusion of a large, fast memory being presented to the

processor

Introduction

4

• The Principle of Locality:

– Programs access a relatively small portion of the address

space at any instant of time.

• Two Different Types of Locality:

– Temporal Locality (Locality in Time):

• If an item is referenced, it will tend to be referenced again soon (e.g.,

loops, reuse)

– Spatial Locality (Locality in Space):

• If an item is referenced, items whose addresses are close by tend to

be referenced soon (e.g., straightline code, array access)

The Principle of Locality

5

• Small, fast storage used to improve average access time to

slow memory.

• Exploits spatial and temporal locality

• In computer architecture, almost everything is a cache!

– Registers “a cache” on variables – software managed

– First-level cache a cache on second-level cache

– Second-level cache a cache on memory

– Memory a cache on disk (virtual memory)

– TLB a cache on page table

• TLB:translation lookaside buffer

– Branch-prediction a cache on prediction information?

– Gives the allusion of a large, fast memory being presented to the
processor

What is a Cache?

6

mailto:naydin@yildiz.edu.tr

Copyright 2000 N. AYDIN. All rights

reserved. 2

A
L
U

M
e
m

ory

R
e
g F

ile

M
U

X
M

U
X

D
ata

M
e
m

ory

M
U

X

Sign
Extend

Zero?

I
F
/I

D

I
D
/E

X

M
E
M

/W
B

E
X
/M

E
M

4

A
d
d
e
r

Next SEQ PC Next SEQ PC

RD RD RD W
B

 D
at

a

Next PC

A
d
d
re

ss

RS1

RS2

Imm

M
U

X

I-Cache

D
-C

ac
h
e

Cache and Pipelining

7

Memory Hierarchy – PMD

PMD(personal mobile device)

8

Memory Hierarchy – PC

9

Memory Hierarchy – Server

10

Memory Performance Gap

11

• Memory hierarchy design becomes more crucial with
recent multi-core processors:

– Aggregate peak bandwidth grows with # cores:
• Intel Core i7 can generate two references per core per clock

• Four cores and 3.2 GHz clock

– 25.6 billion 64-bit data references/second +

– 12.8 billion 128-bit instruction references/second

– = 409.6 GB/s!

• DRAM bandwidth is only 8% of this (34.1 GB/s)

• Requires:
– Multi-port, pipelined caches

– Two levels of cache per core

– Shared third-level cache on chip

Memory Hierarchy Design

12

Copyright 2000 N. AYDIN. All rights

reserved. 3

• High-end microprocessors have >10 MB on-chip
cache

– Consumes large amount of area and power budget

Performance and Power

13

• When a word is not found in the cache, a miss occurs:

– Fetch word from lower level in hierarchy, requiring a higher
latency reference

– Lower level may be another cache or the main memory

– Also fetch the other words contained within the block
• Takes advantage of spatial locality

– Place block into cache in any location within its set,
determined by address

• block address MOD number of sets in cache

Memory Hierarchy Basics

14

Memory Hierarchy Basics

• Hit: data appears in some block in the upper level (eg: Block X)

– Hit Rate: the fraction of memory access found in the upper level

– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieved from a block in the lower level (Block Y)

– Miss Rate = 1 - (Hit Rate)

– Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block to the processor

• Hit Time << Miss Penalty (e.g. 500 instructions)

Lower Level

MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

15

• Hit rate: fraction found in that level

– So high that usually talk about Miss rate

• Average memory-access time

= Hit time + Miss rate x Miss penalty (ns or

clocks)

• Miss penalty: time to replace a block from lower

level, including time to replace in CPU

– access time: time to lower level

= f(latency to lower level)

– transfer time: time to transfer block

= f(BW between upper & lower levels, block size)

Memory Hierarchy Basics

16

• n sets => n-way set associative

– Direct-mapped cache => one block per set (one way)

– Fully associative => one set

• Writing to cache: two strategies

– Write-through
• Immediately update lower levels of hierarchy

– Write-back
• Only update lower levels of hierarchy when an updated block is

replaced

– Both strategies use write buffer to make writes
asynchronous

Memory Hierarchy Basics

17

• Miss rate

– Fraction of cache access that results in a miss

• Causes of misses

– Compulsory
• First reference to a block

– Capacity
• Blocks discarded and later retrieved

– Conflict
• Program makes repeated references to multiple addresses from

different blocks that map to the same location in the cache

Memory Hierarchy Basics

18

Copyright 2000 N. AYDIN. All rights

reserved. 4

• Speculative and multithreaded processors may execute
other instructions during a miss

– Reduces performance impact of misses

Memory Hierarchy Basics

19

• Q1: Where can a block be placed in the upper level?

– Block placement
• Fully Associative, Set Associative, Direct Mapped

• Q2: How is a block found if it is in the upper level?

– Block identification
• Tag/Block

• Q3: Which block should be replaced on a miss?

– Block replacement
• Random, LRU, FIFO

– LRU (Least Recently Used), FIFO (First In-First Out)

• Q4: What happens on a write?

– Write strategy
• Write Back or Write Through (with Write Buffer)

Traditional Four Questions for Memory Hierarchy Designers

20

• Block 12 placed in an 8-block cache:
– Fully associative, direct mapped, 2-way set associative

– S.A. Mapping = (Block Number) Modulo (Number Sets)

Cache

01234567 0123456701234567

Memory

1111111111222222222233
01234567890123456789012345678901

Fully Mapped
(fully associative)

Directly Mapped
(1-way associative)

(12 mod 8) = 4

2-Way Associative
(12 mod 4) = 0

Q1: Where can a block be placed in the upper level?

21

*4*0 *8 *C

Cache

0400 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C 40 44 48 4C

Memory

address maps to block:

location = (block address MOD # blocks in cache)

Direct Mapped Block Placement

22

0400 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C 40 44 48 4C

Cache

Memory

arbitrary block mapping

location = any

Fully Associative Block Placement

23

0400 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C

*4*0 *8 *C

40 44 48 4C

Cache

Memory

*0 *4 *8 *C

Set 0 Set 1 Set 2 Set 3

address maps to set:

location = (block address MOD # sets in cache)

(arbitrary location in set)

Set-Associative Block Placement

24

Copyright 2000 N. AYDIN. All rights

reserved. 5

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index,

expands tag

Block
Offset

Block Address

IndexTag

Q2: How is a block found if it is in the upper level?

25

CACHE SRAM

ADDR

DATA[31:0]

0x00001C0 0xff083c2d

0

1 0x0000000 0x00000021

1 0x0000000 0x00000103

0

0

1

0 0x23F0210 0x00000009

1

TagV Data

=

030x0000000

DATA[58:32]DATA[59]

DATA HITADDRESS =1Tag
Cache

Index Byte Offset

Direct-Mapped Cache Design

26

• Key idea:

– Divide cache into sets

– Allow block anywhere in a set

• Advantages:

– Better hit rate

• Disadvantage:

– More tag bits

– More hardware

– Higher access time

Address

22 8

V TagIndex

0

1

2

253

254

255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0

A Four-Way Set-Associative Cache

Set Associative Cache Design

27

tag 11110111 data 1111000011110000101011=

• Key idea: set size of one block

– 1 comparator required for each block

– No address decoding

– Practical only for small caches due to hardware

demands

tag 00011100 data 0000111100001111111101=

=

=

=

=

tag 11111110

tag 00000011

tag 11100110

tag 11110111 data 1111000011110000101011

data 0000000000001111111100

data 1110111100001110000001

data 1111111111111111111111

tag in 11110111 data out 1111000011110000101011

Fully Associative Cache Design

28

• Easy for Direct Mapped

• Set Associative or Fully Associative:
– Random

– LRU (Least Recently Used)

Assoc: 2-way 4-way 8-way

Size LRU Ran LRU Ran LRU Ran

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q3: Which block should be replaced on a miss?

29

After a cache read miss, if there are no empty cache

blocks, which block should be removed from the cache?

A randomly chosen block?

Easy to implement, how

well does it work?

The Least Recently Used

(LRU) block? Appealing,

but hard to implement for

high associativity

Miss Rate for 2-way Set Associative Cache

Also,

try

other

LRU

approx.

Size Random LRU

16 KB 5.7% 5.2%

64 KB 2.0% 1.9%

256 KB 1.17% 1.15%

Q3: Which block should be replaced on a miss?

30

Copyright 2000 N. AYDIN. All rights

reserved. 6

• Write-through: all writes update cache and underlying
memory/cache
– Can always discard cached data - most up-to-date data is in

memory

– Cache control bit: only a valid bit

• Write-back: all writes simply update cache
– Can’t just discard cached data - may have to write it back to

memory

– Cache control bits: both valid and dirty bits

• Other Advantages:
– Write-through:

• memory (or other processors) always have latest data

• Simpler management of cache

– Write-back:
• much lower bandwidth, since data often overwritten multiple times

• Better tolerance to long-latency memory?

Q4: What happens on a write?

31

• Write allocate: allocate new cache line in

cache
– Usually means that you have to do a “read miss” to fill in rest of

the cache-line!

– Alternative: per/word valid bits

• Write non-allocate (or “write-around”):
– Simply send write data through to underlying memory/cache -

don’t allocate new cache line!

Write Policy: What happens on write-miss?

32

Write-Through Write-Back

Policy

Data written to cache

block

also written to lower-

level memory

Write data only to the
cache

Update lower level
when a block falls out

of the cache

Debug Easy Hard

Do read misses

produce writes?
No Yes

Do repeated writes

make it to lower

level?

Yes No

Additional option (on miss)-- let writes to an un-cached

address; allocate a new cache line (“write-allocate”).

Q4: What happens on a write?

33

Q. Why a write buffer ?

Processor
Cache

Write Buffer

Lower

Level

Memory

Holds data awaiting write-through to

lower level memory

A. So CPU doesn’t stall

Q. Why a buffer, why

not just one register ?

A. Bursts of writes are

common.

Q. Are Read After Write

(RAW) hazards an issue

for write buffer?

A. Yes! Drain buffer before

next read, or send read 1st

after check write buffers.

Write Buffers for Write-Through Caches

34

Reducing Cache Misses: 1. Larger Block Size

• Using the principle of locality. The larger the block,

the greater the chance parts of it will be used again.

Block Size (bytes)

Miss

Rate

0%

5%

10%

15%

20%

25%

1
6

3
2

6
4

1
2

8

2
5

6

1K

4K

16K

64K

256K

35

• One way to reduce the miss rate is to increase

the block size
– Take advantage of spatial locality

– Decreases compulsory misses

• However, larger blocks have disadvantages
– May increase the miss penalty (need to get more data)

– May increase hit time (need to read more data from cache and

larger mux)

– May increase miss rate, since conflict misses

• Increasing the block size can help, but don’t

overdo it.

Increasing Block Size

36

Copyright 2000 N. AYDIN. All rights

reserved. 7

Block Size vs. Cache Measures

• Increasing Block Size generally increases Miss

Penalty and decreases Miss Rate

• As the block size increases the AMAT starts to

decrease, but eventually increases

37

Miss RateMiss Penalty Avg. Memory Access TimeX =Hit Time +

Block Size Block Size Block Size

• Increasing associativity helps reduce conflict
misses

• 2:1 Cache Rule:
– The miss rate of a direct mapped cache of size N is about equal to

the miss rate of a 2-way set associative cache of size N/2

– For example, the miss rate of a 32 Kbyte direct mapped cache is
about equal to the miss rate of a 16 Kbyte 2-way set associative
cache

• Disadvantages of higher associativity
– Need to do large number of comparisons

– Need n-to-1 multiplexor for n-way set associative

– Could increase hit time

– Consume more power

38

Reducing Cache Misses: Higher Associativity

Cache Size Associativity

(KB) 1-way 2-way 4-way 8-way

1 7.65 6.60 6.22 5.44

2 5.90 4.90 4.62 4.09

4 4.60 3.95 3.57 3.19

8 3.30 3.00 2.87 2.59

16 2.45 2.20 2.12 2.04

32 2.00 1.80 1.77 1.79

64 1.70 1.60 1.57 1.59

128 1.50 1.45 1.42 1.44

Red means A.M.A.T. not improved by more associativity

Does not take into account effect of slower clock on rest of program

39

AMAT vs. Associativity

• Miss-oriented Approach to Memory Access:

– CPIExecution includes ALU and Memory instructions

CycleTimeyMissPenaltMissRate
Inst

MemAccess

Execution
CPIICCPUtime 










CycleTimeyMissPenalt
Inst

MemMisses

Execution
CPIICCPUtime 










• Separating out Memory component entirely
– AMAT = Average Memory Access Time

– CPIALUOps does not include memory instructions

CycleTimeAMAT
Inst

MemAccess
CPI

Inst

AluOps
ICCPUtime

AluOps










yMissPenaltMissRateHitTimeAMAT 

 

 DataDataData

InstInstInst

yMissPenaltMissRateHitTime

yMissPenaltMissRateHitTime





40

Cache performance

• Suppose a processor executes at
– Clock Rate = 200 MHz (5 ns per cycle), Ideal (no misses) CPI = 1.1

– 50% arith/logic, 30% ld/st, 20% control

• Suppose that 10% of memory operations get 50 cycle
miss penalty

• Suppose that 1% of instructions get same miss penalty

• CPI = ideal CPI + average stalls per instruction
1.1(cycles/ins) + [0.30 (DataMops/ins)

x 0.10 (miss/DataMop) x 50 (cycle/miss)] + [1 (InstMop/ins)
x 0.01 (miss/InstMop) x 50 (cycle/miss)]

= (1.1 + 1.5 + .5) cycle/ins = 3.1

• 58% of the time the proc is stalled waiting for memory!
– AMAT=(1/1.3)x[1+0.01x50]+(0.3/1.3)x[1+0.1x50]=2.54

41

Impact on Performance

• Unified vs. Separate I&D

• Example:

– 16KB I&D: Inst miss rate=0.64%, Data miss rate=6.47%
– 32KB unified: Aggregate miss rate=1.99%

• Which is better (ignore L2 cache)?
– Assume 33% data ops  75% accesses from instr. (1.0/1.33)
– hit time=1, miss time=50
– Note that data hit has 1 stall for unified cache (only one port)

AMATHarvard=75%x(1+0.64%x50)+25%x(1+6.47%x50) = 2.05
AMATUnified=75%x(1+1.99%x50)+25%x(1+1+1.99%x50)= 2.24

ProcI-Cache-1

Proc

Unified
Cache-1

Unified
Cache-2

D-Cache-1

Proc

Unified
Cache-2

42

Unified vs. Split Caches

Copyright 2000 N. AYDIN. All rights

reserved. 8

• improve cache and memory access times:

)***(* TimeClockCycleyMissPenaltMissRateCPIICCPUtime
nInstructio

ssMemoryAcce

Execution 

Average Memory Access Time = Hit Time + Miss Rate * Miss Penalty

Reducing each of these!

Simultaneously?

• Improve performance by:
• Reduce the miss rate,
• Reduce the miss penalty, or
• Reduce the time to hit in the cache.

43

Improve Cache Performance

• Six basic cache optimizations:
– Larger block size

• Reduces compulsory misses

• Increases capacity and conflict misses, increases miss penalty

– Larger total cache capacity to reduce miss rate
• Increases hit time, increases power consumption

– Higher associativity
• Reduces conflict misses

• Increases hit time, increases power consumption

– Higher number of cache levels
• Reduces overall memory access time

– Giving priority to read misses over writes
• Reduces miss penalty

– Avoiding address translation in cache indexing
• Reduces hit time

44

Memory Hierarchy Basics

• 3 Cs: Compulsory, Capacity, Conflict
0. Larger cache
1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Misses by Compiler Optimizations

• Danger of concentrating on just one parameter!
• Prefetching comes in two flavors:

– Binding prefetch: Requests load directly into register.
• Must be correct address and register!

– Non-Binding prefetch: Load into cache.
• Can be incorrect. Frees HW/SW to guess!

CPUtime  IC  CPI
Execution


Memory accesses

Instruction
Miss rate Miss penalty






Clock cycle time

45

Miss Rate Reduction

• Classifying Misses: 3 Cs
– Compulsory—The first access to a block is not in the

cache, so the block must be brought into the cache. Also
called cold start misses or first reference misses.
(Misses in even an Infinite Cache)

– Capacity—If the cache cannot contain all the blocks
needed during execution of a program, capacity misses will
occur due to blocks being discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

– Conflict—If block-placement strategy is set associative or
direct mapped, conflict misses (in addition to compulsory
& capacity misses) will occur because a block can be
discarded and later retrieved if too many blocks map to its
set. Also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)

• 4th “C”:
– Coherence - Misses caused by cache coherence.

46

Where to misses come from?

Cache Size (KB)

M
is

s
 R

a
te

 p
e

r
T

y
p

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Conflict

47

3Cs Absolute Miss Rate (SPEC92)

• Old rule of thumb: 2x size => 25% cut in miss rate

• What does it reduce?

• Thrashing reduction!!!

Cache Size (KB)

M
is

s
 R

a
te

 p
e

r
T

y
p

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way

4-way

8-way

Capacity

Compulsory

48

0. Cache Size

Copyright 2000 N. AYDIN. All rights

reserved. 9

• Assume total cache size not changed:

• What happens if:

1) Change Block Size:

2) Change Associativity:

3) Change Compiler:

Which of 3Cs is obviously affected?

49

Cache Organization?

Block Size (bytes)

Miss

Rate

0%

5%

10%

15%

20%

25%

1
6

3
2

6
4

1
2

8

2
5

6

1K

4K

16K

64K

256K

Reduced
compulsory

misses
Increased
Conflict
Misses

What else drives up block size?

50

1. Larger Block Size (fixed size & assoc)

Cache Size (KB)

M
is

s
 R

a
te

 p
e

r
T

y
p

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Conflict

51

2. Higher Associativity

Cache Size (KB)

M
is

s
 R

a
te

 p
e

r
T

y
p

e

0%

20%

40%

60%

80%

100%

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

Flaws: for fixed block size

Good: insight => invention

52

3Cs Relative Miss Rate

• Beware: Execution time is only final measure!

• Why is cycle time tied to hit time?

• Will Clock Cycle time increase?

– Hill [1988] suggested hit time for 2-way vs. 1-way

external cache +10%,

internal + 2%

– suggested big and dumb caches

Effective cycle time of assoc

pzrbski ISCA

53

Associativity vs. Cycle Time

• Example: assume CCT = 1.10 for 2-way, 1.12
for 4-way, 1.14 for 8-way vs. CCT direct
mapped

Cache Size Associativity

(KB) 1-way 2-way 4-way 8-way

1 2.33 2.15 2.07 2.01

2 1.98 1.86 1.76 1.68

4 1.72 1.67 1.61 1.53

8 1.46 1.48 1.47 1.43

16 1.29 1.32 1.32 1.32

32 1.20 1.24 1.25 1.27

64 1.14 1.20 1.21 1.23

128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)

54

Example: Avg. Memory Access Time vs. Miss Rate

Copyright 2000 N. AYDIN. All rights

reserved. 10

• Fast Hit Time + Low Conflict =>

Victim Cache

• How to combine fast hit time of

direct mapped

yet still avoid conflict misses?

• Add buffer to place data discarded

from cache

• Jouppi [1990]: 4-entry victim

cache removed 20% to 95% of

conflicts for a 4 KB direct mapped

data cache

• Used in Alpha, HP machines

To Next Lower Level In
Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

55

3. Victim Cache

• How to combine fast hit time of Direct Mapped and have the lower conflict
misses of 2-way SA cache?

• Divide cache: on a miss, check other half of cache to see if there, if so have a
pseudo-hit (slow hit)

• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
– Better for caches not tied directly to processor (L2)

– Used in MIPS R1000 L2 cache, similar in UltraSPARC

Hit Time

Pseudo Hit Time Miss Penalty

Time

56

4. Pseudo-Associativity

• E.g., Instruction Prefetching

– Alpha 21064 fetches 2 blocks on a miss

– Extra block placed in “stream buffer”

– On miss check stream buffer

• Works with data blocks too:

– Jouppi [1990] 1 data stream buffer got 25% misses
from 4KB cache; 4 streams got 43%

– Palacharla & Kessler [1994] for scientific programs for
8 streams got 50% to 70% of misses from
2 64KB, 4-way set associative caches

• Prefetching relies on having extra memory
bandwidth that can be used without penalty

57

5. Hardware Prefetching of Instructions & Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)
– Cache Prefetch: load into cache (MIPS IV, PowerPC,

SPARC v. 9)
– Special prefetching instructions cannot cause faults; a

form of speculative execution

• Prefetching comes in two flavors:
– Binding prefetch: Requests load directly into register.

• Must be correct address and register!

– Non-Binding prefetch: Load into cache.
• Can be incorrect. Faults?

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
– Higher superscalar reduces difficulty of issue bandwidth

58

6. Software Prefetching Data

• McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software

• Instructions

– Reorder procedures in memory so as to reduce conflict misses

– Profiling to look at conflicts(using tools they developed)

• Data

– Merging Arrays: improve spatial locality by single array of
compound elements vs. 2 arrays

– Loop Interchange: change nesting of loops to access data in order
stored in memory

– Loop Fusion: Combine 2 independent loops that have same
looping and some variables overlap

– Blocking: Improve temporal locality by accessing “blocks” of
data repeatedly vs. going down whole columns or rows

59

7. Compiler Optimizations

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky

(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged

arrays

loop

interchange

loop fusion blocking

60

Summary of Compiler Optimizations to Reduce Cache

Misses (by hand)

Copyright 2000 N. AYDIN. All rights

reserved. 11

1. Reduce the miss rate,

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache.

61

Improving Cache Performance

• Four techniques
– Read priority over write on miss

– Early Restart and Critical Word First on miss

– Non-blocking Caches (Hit under Miss, Miss under Miss)

– Second Level Cache

• Can be applied recursively to Multilevel Caches
– Danger is that time to DRAM will grow with multiple levels in between

– First attempts at L2 caches can make things worse, since increased worst
case is worse

• Out-of-order CPU can hide L1 data cache miss
(3–5 clocks), but stall on L2 miss (40–100
clocks)?

CPUtime  IC  CPI
Execution


Memory accesses

Instruction
Miss rate Miss penalty






Clock cycle time

62

Reducing Miss Penalty

write
buffer

CPU

in out

DRAM
(or lower mem)

Write Buffer

63

1. Read Priority over Write on Miss

• Write-through w/ write buffers => RAW conflicts

with main memory reads on cache misses
– If simply wait for write buffer to empty, might increase read miss penalty

(old MIPS 1000 by 50%)

– Check write buffer contents before read;

if no conflicts, let the memory access continue

• Write-back want buffer to hold displaced blocks
– Read miss replacing dirty block

– Normal: Write dirty block to memory, and then do the read

– Instead copy the dirty block to a write buffer, then do the read, and then do

the write

– CPU stall less since restarts as soon as do read

64

1. Read Priority over Write on Miss

• Don’t wait for full block to be loaded before restarting

CPU

– Early restart—As soon as the requested word of the block

arrives, send it to the CPU and let the CPU continue execution

– Critical Word First—Request the missed word first from

memory and send it to the CPU as soon as it arrives; let the

CPU continue execution while filling the rest of the words in

the block. Also called wrapped fetch and requested word first

• Generally useful only in large blocks,

• Spatial locality => tend to want next sequential word, so

not clear if benefit by early restart

block

65

2. Early Restart and Critical Word First

• Non-blocking cache or lockup-free cache allow data
cache to continue to supply cache hits during a miss

– requires F/E bits on registers or out-of-order execution

– requires multi-bank memories

• “hit under miss” reduces the effective miss penalty by
working during miss vs.. ignoring CPU requests

• “hit under multiple miss” or “miss under miss” may
further lower the effective miss penalty by overlapping
multiple misses

– Significantly increases the complexity of the cache controller
as there can be multiple outstanding memory accesses

– Requires multiples memory banks (otherwise cannot support)

– Pentium Pro allows 4 outstanding memory misses

66

3. Non-blocking Caches

Copyright 2000 N. AYDIN. All rights

reserved. 12

• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26

• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19

• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Hit Under i Misses

A
v

g
.
M

e
m

.
A

c
c

e
s

s
 T

im
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

e
q

n
to

tt

e
s
p

re
s
s
o

x
lis

p

c
o
m

p
re

ss

m
d

ljs
p

2 e
a

r

fp
p

p
p

to
m

c
a

tv

s
w

m
2

5
6

d
o

d
u

c

s
u
2

co
r

w
a

v
e
5

m
d

ljd
p

2

h
y
d

ro
2

d

a
lv

in
n

n
a

s
a
7

s
p
ic

e
2

g
6

o
ra

0->1

1->2

2->64

Base

Integer Floating Point

“Hit under n Misses”

0->1

1->2

2->64

Base

67

Value of Hit Under Miss for SPEC

• L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 +

Miss RateL1 x (Hit TimeL2 + Miss RateL2 + Miss PenaltyL2)

• Definitions:
– Local miss rate— misses in this cache divided by the

total number of memory accesses to this cache (Miss
rateL2)

– Global miss rate—misses in this cache divided by the
total number of memory accesses generated by the CPU

– Global Miss Rate is what matters

68

4. Add a Second-level Cache

• 32 KByte 1st level cache;
Increasing 2nd level cache

• Global miss rate close to
single level cache rate
provided L2 >> L1

• Don’t use local miss rate

• L2 not tied to CPU clock
cycle!

• Cost & A.M.A.T.

• Generally Fast Hit Times
and fewer misses

• Since hits are few, target
miss reduction

Linear

Log

Cache Size

Cache Size

69

Comparing Local and Global Miss Rates

• Reducing Miss Rate

1. Reduce Misses via Larger Block Size

2. Reduce Conflict Misses via Higher Associativity

3. Reducing Conflict Misses via Victim Cache

4. Reducing Conflict Misses via Pseudo-Associativity

5. Reducing Misses by HW Prefetching Instr, Data

6. Reducing Misses by SW Prefetching Data

7. Reducing Capacity/Conf. Misses by Compiler

Optimizations

70

Reducing Misses: Which apply to L2 Cache?

Relative CPU Time

Block Size

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

16 32 64 128 256 512

1.36
1.28 1.27

1.34

1.54

1.95

• 32KB L1, 8 byte path to memory
71

L2 Cache Block Size & A.M.A.T.

1. Reduce the miss rate,

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache.

72

Improving Cache Performance

Copyright 2000 N. AYDIN. All rights

reserved. 13

• Why Alpha 21164 has 8KB Instruction and

8KB data cache + 96KB second level cache?
– Small data cache and clock rate

• Direct Mapped, on chip

73

1. Small and Simple Caches

• Send virtual address to cache? Called Virtually
Addressed Cache or just Virtual Cache vs. Physical
Cache
– Every time process is switched logically must flush the cache; otherwise get

false hits
• Cost is time to flush + “compulsory” misses from empty cache

– Dealing with aliases (sometimes called synonyms);
Two different virtual addresses map to same physical address

– I/O must interact with cache, so need virtual address

• Solution to aliases
– HW guarantees every cache block has unique physical address

– SW guarantee : lower n bits must have same address;
as long as covers index field & direct mapped, they must be unique; called page
coloring

• Solution to cache flush
– Add process identifier tag that identifies process as well as address within

process: can’t get a hit if wrong process

74

2. Avoiding Address Translation

CPU

TB

$

MEM

VA

PA

PA

Conventional
Organization

CPU

$

TB

MEM

VA

VA

PA

Virtually Addressed Cache
Translate only on miss

Synonym Problem

CPU

$ TB

MEM

VA

PA

Tags

PA

Overlap $ access
with VA translation:
requires $ index to
remain invariant

across translation

VA

Tags

L2 $

75

Virtually Addressed Caches

• Page table is a large data structure in memory
• Two memory accesses for every load, store, or

instruction fetch!!!
• Virtually addressed cache?

– synonym problem

• Cache the address translations?
• If index is physical part of address, can start tag

access in parallel with translation so that can
compare to physical tag

CPU
Trans-
lation Cache

Main
Memory

VA PA miss

hit
data

76

Address Translation

CPU
TLB

Lookup
Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 tt1/2 t

Translation
with a TLB

• Just like any other cache, the TLB can be organized as fully

associative, set associative, or direct mapped

• TLBs are usually small, typically not more than 128 - 256 entries

even on high end machines. This permits fully Associative

lookup on these machines.

– Most mid-range machines use small n-way set associative organizations.

77

Translation Lookaside Buffers

A way to speed up translation is to use a special cache
of recently used page table entries -- this has many
names, but the most frequently used is Translation
Lookaside Buffer or TLB

Virtual Address Physical Address Dirty Ref Valid Access

Really just a cache on the page table mappings

TLB access time comparable to cache access time
(much less than main memory access time)

78

Translation Lookaside Buffer

Copyright 2000 N. AYDIN. All rights

reserved. 14

• Pipeline Tag Check and Update Cache as separate
stages; current write tag check & previous write
cache update

• Only STORES in the pipeline; empty during a miss

Store r2, (r1) Check r1
Add --
Sub --
Store r4, (r3) M[r1]<-r2 & check r3

• “Delayed Write Buffer”; must be checked on
reads; either complete write or read from buffer

79

3. Pipelined Writes

• 8 Stage Pipeline:
– IF–first half of fetching of instruction; PC selection happens

here as well as initiation of instruction cache access.

– IS–second half of access to instruction cache.

– RF–instruction decode and register fetch, hazard checking
and also instruction cache hit detection.

– EX–execution, which includes effective address calculation,
ALU operation, and branch target computation and
condition evaluation.

– DF–data fetch, first half of access to data cache.

– DS–second half of access to data cache.

– TC–tag check, determine whether the data cache access hit.

– WB–write back for loads and register-register operations.

• What is impact on Load delay?
– Need 2 instructions between a load and its use!

80

Case Study: MIPS R4000

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

TWO Cycle
Load Latency

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

THREE Cycle
Branch Latency

(conditions evaluated
during EX phase)

Delay slot plus two stalls
Branch likely cancels delay slot if not taken

81

Case Study: MIPS R4000

• Not ideal CPI of 1:
– Load stalls (1 or 2 clock cycles)

– Branch stalls (2 cycles + unfilled slots)

– FP result stalls: RAW data hazard (latency)

– FP structural stalls: Not enough FP hardware (parallelism)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

e
qn

to
tt

e
sp

re
s

so g
cc li

d
od

uc

n
as

a
7

o
ra

sp
ic

e2
g

6

su
2c

o
r

to
m

ca
tv

Base Load stalls Branch stalls FP result stalls FP structural

stalls

82

R4000 Performance

Technique MR MP HT Complexity

Larger Block Size + – 0

Higher Associativity + – 1

Victim Caches + 2

Pseudo-Associative Caches + 2

HW Prefetching of Instr/Data + 2

Compiler Controlled Prefetching + 3

Compiler Reduce Misses + 0

Priority to Read Misses + 1

Early Restart & Critical Word 1st + 2

Non-Blocking Caches + 3

Second Level Caches + 2

Better memory system + 3

Small & Simple Caches – + 0

Avoiding Address Translation + 2

Pipelining Caches + 2

m
is

s
 r

a
te

h
it

 t
im

e
m

is
s

p
e

n
a

lt
y

83

Cache Optimization Summary

• Superscalar CPU & Number Cache Ports must
match: number memory accesses/cycle?

• Speculative Execution and non-faulting option on
memory/TLB

• Parallel Execution vs. Cache locality
– Want far separation to find independent operations vs..

want reuse of data accesses to avoid misses

• I/O and consistency of data between cache and
memory
– Caches => multiple copies of data

– Consistency by HW or by SW?

– Where connect I/O to computer?

84

Cache Cross Cutting Issues

Copyright 2000 N. AYDIN. All rights

reserved. 15

0,01%

0,10%

1,00%

10,00%

100,00%
AlphaSort Espresso Sc Mdljsp2 Ear Alvinn Mdljp2 Nasa7

M
is

s
 R

a
te I $

D $

L2

8K

8K

2M

I$ miss = 2%

D$ miss = 13%

L2 miss = 0.6%

I$ miss = 1%

D$ miss = 21%

L2 miss = 0.3%

I$ miss = 6%

D$ miss = 32%

L2 miss = 10%

85

Alpha Memory Performance: Miss Rates of SPEC92

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

AlphaSort Espresso Sc Mdljsp2 Ear Alvinn Mdljp2

C
P

I

L2

I$

D$

I Stall

Other

• Instruction stall: branch mispredict (green);

• Data cache (blue); Instruction cache (yellow); L2$ (pink)

Other: compute + reg conflicts, structural conflicts

86

Alpha CPI Components

• 4KB Data cache

miss rate 8%,12%,

or 28%?

• 1KB Instr cache

miss rate 0%,3%,or

10%?

• Alpha vs.. MIPS

for 8KB Data $:

17% vs. 10%

• Why 2X Alpha v.

MIPS?

0%

5%

10%

15%

20%

25%

30%

35%

1 2 4 8 16 32 64 128

Miss
Rate

Cache Size (KB)

D: tomcatv

D: gcc

D: espresso

I: gcc

I: espresso

I: tomcatv

D$, Tom

D$, gcc

D$, esp

I$, gcc

I$, esp

I$, Tom
87

Predicting Cache Performance from Different

Prog. (ISA, compiler, ...)

• Reduce hit time
– Small and simple first-level caches

– Way prediction

• Increase bandwidth
– Pipelined caches, multibanked caches, non-blocking

caches

• Reduce miss penalty
– Critical word first, merging write buffers

• Reduce miss rate
– Compiler optimizations

• Reduce miss penalty or miss rate via
parallelization
– Hardware or compiler prefetching

88

Advanced Optimizations

• Small and simple first level caches

– Critical timing path:

• addressing tag memory, then

• comparing tags, then

• selecting correct set

– Direct-mapped caches can overlap tag compare and
transmission of data

– Lower associativity reduces power because fewer
cache lines are accessed

89

Advanced Optimizations

Access time vs. size and associativity

90

L1 Size and Associativity

Copyright 2000 N. AYDIN. All rights

reserved. 16

Energy per read vs. size and associativity

91

L1 Size and Associativity

• To improve hit time, predict the way to pre-set
mux

– Mis-prediction gives longer hit time

– Prediction accuracy

• > 90% for two-way

• > 80% for four-way

• I-cache has better accuracy than D-cache

– First used on MIPS R10000 in mid-90s

– Used on ARM Cortex-A8

• Extend to predict block as well

– “Way selection”

– Increases mis-prediction penalty
92

Way Prediction

• Pipeline cache access to improve bandwidth

– Examples:

• Pentium: 1 cycle

• Pentium Pro – Pentium III: 2 cycles

• Pentium 4 – Core i7: 4 cycles

• Increases branch mis-prediction penalty

• Makes it easier to increase associativity

93

Pipelined Caches

• Organize cache as independent banks to support
simultaneous access

– ARM Cortex-A8 supports 1-4 banks for L2

– Intel i7 supports 4 banks for L1 and 8 banks for L2

• Interleave banks according to block address

94

Multibanked Caches

• Allow hits before previous misses complete
– “Hit under miss”

– “Hit under multiple miss”

• L2 must support this

• In general, processors can hide L1 miss penalty but not
L2 miss penalty

95

Nonblocking Caches

• Critical word first

– Request missed word from memory first

– Send it to the processor as soon as it arrives

• Early restart

– Request words in normal order

– Send missed work to the processor as soon as it arrives

• Effectiveness of these strategies depends on block
size and likelihood of another access to the portion
of the block that has not yet been fetched

96

Critical Word First, Early Restart

Copyright 2000 N. AYDIN. All rights

reserved. 17

• When storing to a block that is already pending in the write
buffer, update write buffer

• Reduces stalls due to full write buffer

• Do not apply to I/O addresses

No write

buffering

Write buffering

97

Merging Write Buffer

• Loop Interchange

– Swap nested loops to access memory in
sequential order

• Blocking

– Instead of accessing entire rows or columns,
subdivide matrices into blocks

– Requires more memory accesses but improves
locality of accesses

98

Compiler Optimizations

for (i = 0; i < N; i = i + 1)

for (j = 0; j < N; j = j + 1)

{

r = 0;

for (k = 0; k < N; k = k + 1)

r = r + y[i][k]*z[k][j];

x[i][j] = r;

};

99

Blocking

for (jj = 0; jj < N; jj = jj + B)

for (kk = 0; kk < N; kk = kk + B)

for (i = 0; i < N; i = i + 1)

for (j = jj; j < min(jj + B,N); j = j + 1)

{

r = 0;

for (k = kk; k < min(kk + B,N); k = k + 1)

r = r + y[i][k]*z[k][j];

x[i][j] = x[i][j] + r;

};

100

Blocking

• Fetch two blocks on miss (include next sequential
block)

Pentium 4 Pre-fetching

101

Hardware Prefetching

• Insert prefetch instructions before data is needed

• Non-faulting: prefetch doesn’t cause exceptions

• Register prefetch

– Loads data into register

• Cache prefetch

– Loads data into cache

• Combine with loop unrolling and software
pipelining

102

Compiler Prefetching

Copyright 2000 N. AYDIN. All rights

reserved. 18

• 128 MiB to 1 GiB

• Smaller blocks require substantial tag storage

• Larger blocks are potentially inefficient

• One approach (L-H):

– Each SDRAM row is a block index

– Each row contains set of tags and 29 data segments

– 29-set associative

– Hit requires a CAS

103

Use HBM to Extend Hierarchy

• Another approach (Alloy cache):

– Mold tag and data together

– Use direct mapped

• Both schemes require two DRAM accesses for
misses

– Two solutions:
• Use map to keep track of blocks

• Predict likely misses

104

Use HBM to Extend Hierarchy

105

Use HBM to Extend Hierarchy

106

Summary

http://www.bit-tech.net/hardware/memory/2007/11/15/the_secrets_of_pc_memory_part_1/3

107

Computer Memory Hierarchy

• Performance metrics

– Latency is concern of cache

– Bandwidth is concern of multiprocessors and I/O

– Access time
• Time between read request and when desired word arrives

– Cycle time
• Minimum time between unrelated requests to memory

• SRAM memory has low latency, use for cache

• Organize DRAM chips into many banks for high
bandwidth, use for main memory

108

Memory Technology and Optimizations

Copyright 2000 N. AYDIN. All rights

reserved. 19

• SRAM

– Requires low power to retain bit

– Requires 6 transistors/bit

• DRAM

– Must be re-written after being read

– Must also be periodically refeshed
• Every ~ 8 ms (roughly 5% of time)

• Each row can be refreshed simultaneously

– One transistor/bit

– Address lines are multiplexed:
• Upper half of address: row access strobe (RAS)

• Lower half of address: column access strobe (CAS)

109

Memory Technology

110

A SRAM Example

111

A DRAM Example

112

Internal Organization of DRAM

• Amdahl:
– Memory capacity should grow linearly with processor speed

– Unfortunately, memory capacity and speed has not kept pace with
processors

• Some optimizations:
– Multiple accesses to same row

– Synchronous DRAM

• Added clock to DRAM interface

• Burst mode with critical word first

– Wider interfaces

– Double data rate (DDR)

– Multiple banks on each DRAM device

113

Memory Technology

114

Memory Optimizations

Copyright 2000 N. AYDIN. All rights

reserved. 20

115

Memory Optimizations

116

DIMM Dual Inline Memory Module

• DDR:

– DDR2
• Lower power (2.5 V -> 1.8 V)

• Higher clock rates (266 MHz, 333 MHz, 400 MHz)

– DDR3
• 1.5 V

• 800 MHz

– DDR4
• 1-1.2 V

• 1333 MHz

• GDDR5 is graphics memory based on DDR3

117

Memory Optimizations

• Reducing power in SDRAMs:

– Lower voltage

– Low power mode (ignores clock, continues to refresh)

• Graphics memory:

– Achieve 2-5 X bandwidth per DRAM vs. DDR3
• Wider interfaces (32 vs. 16 bit)

• Higher clock rate
– Possible because they are attached via soldering instead of socketted

DIMM modules

118

Memory Optimizations

119

Memory Power Consumption

• Stacked DRAMs in same package as processor

– High Bandwidth Memory (HBM)

120

Stacked/Embedded DRAMs

Copyright 2000 N. AYDIN. All rights

reserved. 21

• Type of EEPROM

• Types: NAND (denser) and NOR (faster)

• NAND Flash:

– Reads are sequential, reads entire page (.5 to 4 KiB)

– 25 us for first byte, 40 MiB/s for subsequent bytes

– SDRAM: 40 ns for first byte, 4.8 GB/s for subsequent
bytes

– 2 KiB transfer: 75 uS vs 500 ns for SDRAM, 150X
slower

– 300 to 500X faster than magnetic disk

121

Flash Memory

• Must be erased (in blocks) before being
overwritten

• Nonvolatile, can use as little as zero power

• Limited number of write cycles (~100,000)

• $2/GiB, compared to $20-40/GiB for SDRAM and
$0.09 GiB for magnetic disk

• Phase-Change/Memrister Memory

– Possibly 10X improvement in write performance and
2X improvement in read performance

122

NAND Flash Memory

123

Solid State Drives

• Main storage component of Solid State Drive (SSD)

– USB Drive, cell phone, touch pad…

124

NAND Flash Memory

• Advantages of NAND flash
– Fast random read (25 us)

– Energy efficiency

– High reliability (no moving parts) compared to harddisks

• Widely deployed in high-end laptops
– Macbook air, ThinkPad X series, touch pad…

• Increasingly deployed in enterprise environment either as a
secondary cache or main storage

125

NAND Flash Memory

• Disadvantages of SSD
– Garbage collection (GC) problem of SSD

• Stemmed from the out-of-place update characteristics

• Update requests invalidate old version of pages and then write new
version of these pages to a new place

• Copy valid data to somewhere else (increasing number of IOs)

• Garbage collection is periodically started to erase victim blocks and copy
valid pages to the free blocks (slow erase: 10xW,100xR)

– Blocks in the SSD have a limited number of erase cycles

• 100,000 for Single Level Chip (SLC), 5,000-10,000 for Multiple Level Chip
(MLC), can be as low as 3,000

• May be quickly worn out in enterprise environment

– Performance is very unpredictable
• Due to unpredictable triggering of the time-consuming GC process

126

NAND Flash Memory

Copyright 2000 N. AYDIN. All rights

reserved. 22

• DRAM + Flash Memory

– Uses small DRAM as a cache to buffer writes and

cache reads by leveraging access locality

– Uses large flash memory to store cold data

– Advantages

• Similar performance as DRAM

• Low power consumption

• Low costs

127

Hybrid Main Memory System

Attribute SSD HDD

Random access time 0.1 ms 5-10 ms

Bandwidth 100-500 MB/s 100 MB/s sequential

Price/GB 0.9-2 0.1$

Size Up to 2TB, 250GB

common

4TB

Power consumption 5 watts Up to 20 watts

Read/write symmetry No Yes

Noise No Yes (spin, rotate)

128

Comparison SSD - HDD

• Memory is susceptible to cosmic rays

• Soft errors: dynamic errors

– Detected and fixed by error correcting codes (ECC)

• Hard errors: permanent errors

– Use spare rows to replace defective rows

• Chipkill: a RAID-like error recovery technique

129

Memory Dependability

130

Memory Dependability

• A Redundant Array of Inexpensive DRAM (RAID)

processor chip is directly placed on the memory

DIMM.

• The RAID chip calculates an ECC checksum for the

contents of the entire set of chips for each memory

access and stores the result in extra memory space on

the protected DIMM.

• Thus, when a memory chip on the DIMM fails, the

RAID result can be used to "back up" the lost data.

131

Memory Dependability Computer Memory Hierarchy

http://www.bit-tech.net/hardware/memory/2007/11/15/the_secrets_of_pc_memory_part_1/3

132

Copyright 2000 N. AYDIN. All rights

reserved. 23

CPU Memory

A0-A31 A0-A31

D0-D31 D0-D31

“Physical addresses” of memory locations

Data

o All programs share one address space: The

physical address space

o Machine language programs must be aware

of the machine organization

o No way to prevent a program from

accessing any machine resource

133

The Limits of Physical Addressing

CPU Memory

A0-A31 A0-A31

D0-D31 D0-D31

Data

• User programs run in a standardized virtual

address space

• Address Translation hardware, managed by the

operating system (OS), maps virtual address to

physical memory

“Physical

Addresses”

Address
Translation

Virtual Physical

“Virtual Addresses”

•Hardware supports “modern” OS features:

Protection, Translation, Sharing

134

Solution: Add a Layer of Indirection

• Translation:
– Program can be given consistent view of memory, even though physical memory is

scrambled

– Makes multithreading reasonable (now used a lot!)

– Only the most important part of program (“Working Set”) must be in physical
memory.

– Contiguous structures (like stacks) use only as much physical memory as necessary
yet still grow later.

• Protection:
– Different threads (or processes) protected from each other.

– Different pages can be given special behavior

• (Read Only, Invisible to user programs, etc).

– Kernel data protected from User programs

– Very important for protection from malicious programs

• Sharing:
– Can map same physical page to multiple users

(“Shared memory”)

135

Three Advantages of Virtual Memory

A machine

usually supports

pages of a few

sizes

(MIPS R4000):

Physical

Memory Space

A valid page table entry codes physical memory

“frame” address for the page

A virtual address space

is divided into blocks

of memory called pages
frame

frame

frame

frame

A page table is indexed by a

virtual address

virtual

address

Page Table

OS manages

the page

table for

each ASID

(Addr. Space

ID)

136

Page tables encode virtual address spaces

Physical Memory

Virtual Memory

137

An Example of Page Table

Physical Memory

Virtual Memory

Page size:4KB

138

Dividing the address space by a page size

Copyright 2000 N. AYDIN. All rights

reserved. 24

Physical Memory

Virtual Memory

Page size:4KB

P.P. 0

P.P. 1

P.P. 2

P.P. 3

V.P. 0

V.P. 1

V.P. 2

V.P. 3

V.P. 4

V.P. 5

139

Virtual Page & Physical Page

Physical Memory

Virtual Memory

Page size:4KB

P.P. 0

P.P. 1

P.P. 2

P.P. 3

V.P. 0

V.P. 1

V.P. 2

V.P. 3

V.P. 4

V.P. 5

Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset

Physical Address

140

Addressing

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset

Physical Address

Page Table Entry

141

Addressing

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset

Physical Address

Page Table Entry

V P R D Physical Page No.

Valid/Present Bit

If set, page being pointed is

resident in memory

Otherwise, on disk or not

allocated

142

Addressing

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset

Physical Address

Page Table Entry

V P R D Physical Page No.

Protection Bits

Restrict access;

read-only, read/write, system-

only access

143

Addressing

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset

Physical Address

Page Table Entry

V P R D Physical Page No.

Reference Bit

Needed by replacement policies

If set, page has been referenced

144

Addressing

Copyright 2000 N. AYDIN. All rights

reserved. 25

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset

Physical Address

Page Table Entry

V P R D Physical Page No.

Dirty Bit

If set, at least one word in page

has been modified

145

Page Table Entry

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset Physical Address

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

146

Page Table Entry

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset Physical Address

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

virtual address

147

Page Table Lookup

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset Physical Address

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

virtual address

148

Page Table Lookup

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset Physical Address

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

virtual address

149

Page Table Lookup

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset Physical Address

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

virtual address

150

Page Table Lookup

Copyright 2000 N. AYDIN. All rights

reserved. 26

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset
Physical Address

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

virtual address

physical address

151

Page Table Lookup

Physical

Memory Space

• Page table maps virtual page numbers to physical
frames (“PTE” = Page Table Entry)

• Virtual memory => treat memory  cache for disk
• 4 fundamental questions: placement, identification,

replacement, and write policy?

Virtual Address

Page Table

index
into
page
table

Page Table
Base Reg

V
Access
Rights PA

V page no. offset
12

table located
in physical
memory

P page no. offset

12

Physical Address

frame

frame

frame

frame

virtual

address

Page Table

152

Details of Page Table

• Placement

– Operating systems allow blocks to be placed

anywhere in main memory

• Identification

– Page Table, Inverted Page Table

• Replacement

– Almost all operating systems try to use LRU

• Write Policies

– Always write back

153

4 Fundamental Questions

• Since Page Table is located in main memory, it
takes one memory access latency to finish an
address translation;

• As a result, a load/store operation from/to main
memory needs two memory access latency in total;

• Considering the expensive memory access latency,
the overhead of page table lookup should be
optimized;

• How?

– Principle of Locality

– Caching

154

Latency

“Physical

Addresses”

CPU Memory

A0-A31 A0-A31

D0-D31 D0-D31

Data

TLB also contains

protection bits for virtual address

Virtual Physical

“Virtual Addresses”

Translation
Look-Aside

Buffer
(TLB)

Translation Look-Aside Buffer (TLB)

A small fully-associative cache of

mappings from virtual to physical addresses

Fast common case: Virtual address is in TLB,

process has permission to read/write it.

What is

the table

of mappings

that it caches?

155

MIPS Address Translation: How does it work?

V=0 pages either

reside on disk or

have not yet been

allocated.

OS handles V=0

“Page fault”

Physical and virtual

pages must be the

same size!

TLB

Page Table

2

0

1

3

virtual address

page off

2

frame page

2
50

physical address

page off

TLB caches

page table

entries.

MIPS handles TLB misses in

software (random

replacement). Other

machines use hardware.

for ASID

Physical

frame

address

156

The TLB caches page table entries

Copyright 2000 N. AYDIN. All rights

reserved. 27

Index Byte Select

ValidCache Tags Cache Data

Data out

Virtual Page Number Page Offset

Translation
Look-Aside

Buffer
(TLB)

Virtual

Physical

=

Hit

Cache Tag

This works, but ...

Q. What is the downside?

A. Inflexibility. Size of cache

limited by page size.

Cache Block

Cache Block

157

Can TLB and caching be overlapped?

VA: 64bits

PA: 40bits

Page size: 16KB

TLB: 2-way set

associative, 256

entries

Cache block: 64B

L1: direct-mapping,

16KB

L2: 4-way set

associative, 4MB

8

158

• Protection via virtual memory

– Keeps processes in their own memory space

• Role of architecture

– Provide user mode and supervisor mode

– Protect certain aspects of CPU state

– Provide mechanisms for switching between user mode
and supervisor mode

– Provide mechanisms to limit memory accesses

– Provide TLB to translate addresses

159

Virtual Memory and Virtual Machines

• Supports isolation and security

• Sharing a computer among many unrelated users

• Enabled by raw speed of processors, making the overhead
more acceptable

• Allows different ISAs and operating systems to be
presented to user programs
– “System Virtual Machines”

– SVM software is called “virtual machine monitor” or “hypervisor”

– Individual virtual machines run under the monitor are called “guest
VMs”

160

Virtual Machines

• Guest software should:
– Behave on as if running on native hardware

– Not be able to change allocation of real system
resources

• VMM should be able to “context switch”
guests

• Hardware must allow:
– System and use processor modes

– Privileged subset of instructions for allocating system
resources

161

Requirements of VMM

• Virtual machine monitor (VMM) or hypervisor is software that supports

VMs

• VMM determines how to map virtual resources to physical resources

• Physical resource may be time-shared, partitioned, or emulated in software

• VMM is much smaller than a traditional OS;

– isolation portion of a VMM is  10,000 lines of

code

162

Virtual Machine Monitors (VMMs)

Copyright 2000 N. AYDIN. All rights

reserved. 28

163

Virtual Machine Monitors (VMMs)

164

Virtual Machine Monitors (VMMs)

• Each guest OS maintains its own set of page tables

– VMM adds a level of memory between physical and
virtual memory called “real memory”

– VMM maintains shadow page table that maps guest
virtual addresses to physical addresses

• Requires VMM to detect guest’s changes to its own page table

• Occurs naturally if accessing the page table pointer is a
privileged operation

165

Impact of VMs on Virtual Memory

• Objectives:

– Avoid flushing TLB

– Use nested page tables instead of shadow page tables

– Allow devices to use DMA to move data

– Allow guest OS’s to handle device interrupts

– For security: allow programs to manage encrypted
portions of code and data

166

Extending the ISA for Virtualization

• Predicting cache performance of one program

from another

• Simulating enough instructions to get accurate

performance measures of the memory hierarchy

• Not deliverying high memory bandwidth in a

cache-based system

167

Fallacies and Pitfalls

