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Outline
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Computer Memory Hierarchy
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• Programmers want unlimited amounts of memory with low 
latency

• Fast memory technology is more expensive per bit than slower 
memory

• Solution:  
– organize memory system into a hierarchy

• Entire addressable memory space available in largest, slowest memory

• Incrementally smaller and faster memories, 
– each containing a subset of the memory below it, proceed in steps up toward the processor

• Temporal and spatial locality insures that nearly all references 
can be found in smaller memories
– Gives the allusion of a large, fast memory being presented to the 

processor

Introduction
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• The Principle of Locality:

– Programs access a relatively small portion of the address 

space at any instant of time.

• Two Different Types of Locality:

– Temporal Locality (Locality in Time): 

• If an item is referenced, it will tend to be referenced again soon (e.g., 

loops, reuse)

– Spatial Locality (Locality in Space): 

• If an item is referenced, items whose addresses are close by tend to 

be referenced soon (e.g., straightline code, array access)

The Principle of Locality
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• Small, fast storage used to improve average access time to 

slow memory.

• Exploits spatial and temporal locality

• In computer architecture, almost everything is a cache!

– Registers “a cache” on variables – software managed

– First-level cache a cache on second-level cache

– Second-level cache a cache on memory

– Memory a cache on disk (virtual memory)

– TLB a cache on page table

• TLB:translation lookaside buffer

– Branch-prediction a cache on prediction information?

– Gives the allusion of a large, fast memory being presented to the 
processor

What is a Cache?
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Memory Hierarchy – PMD

PMD(personal mobile device)
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Memory Hierarchy – PC
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Memory Hierarchy – Server
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Memory Performance Gap
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• Memory hierarchy design becomes more crucial with 
recent multi-core processors:

– Aggregate peak bandwidth grows with # cores:
• Intel Core i7 can generate two references per core per clock

• Four cores and 3.2 GHz clock

– 25.6 billion 64-bit data references/second +

– 12.8 billion 128-bit instruction references/second

– = 409.6 GB/s!

• DRAM bandwidth is only 8% of this (34.1 GB/s)

• Requires:
– Multi-port, pipelined caches

– Two levels of cache per core

– Shared third-level cache on chip

Memory Hierarchy Design

12
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• High-end microprocessors have >10 MB on-chip 
cache

– Consumes large amount of area and power budget

Performance and Power
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• When a word is not found in the cache, a miss occurs:

– Fetch word from lower level in hierarchy, requiring a higher 
latency reference

– Lower level may be another cache or the main memory

– Also fetch the other words contained within the block
• Takes advantage of spatial locality

– Place block into cache in any location within its set, 
determined by address

• block address MOD number of sets in cache

Memory Hierarchy Basics
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Memory Hierarchy Basics

• Hit: data appears in some block in the upper level (eg: Block X) 

– Hit Rate: the fraction of memory access found in the upper level

– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieved from a block in the lower level (Block Y)

– Miss Rate  = 1 - (Hit Rate)

– Miss Penalty: Time to replace a block in the upper level  + 

Time to deliver the block to the processor

• Hit Time << Miss Penalty (e.g. 500 instructions)

Lower Level

MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y
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• Hit rate: fraction found in that level

– So high that usually talk about Miss rate

• Average memory-access time 

= Hit time + Miss rate x Miss penalty (ns or 

clocks)

• Miss penalty: time to replace a block from lower 

level, including time to replace in CPU

– access time: time to lower level 

= f(latency to lower level)

– transfer time: time to transfer block 

= f(BW between upper & lower levels, block size)

Memory Hierarchy Basics
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• n sets => n-way set associative

– Direct-mapped cache => one block per set (one way)

– Fully associative => one set

• Writing to cache:  two strategies

– Write-through
• Immediately update lower levels of hierarchy

– Write-back
• Only update lower levels of hierarchy when an updated block is 

replaced

– Both strategies use write buffer to make writes 
asynchronous

Memory Hierarchy Basics
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• Miss rate

– Fraction of cache access that results in a miss

• Causes of misses

– Compulsory
• First reference to a block

– Capacity
• Blocks discarded and later retrieved

– Conflict
• Program makes repeated references to multiple addresses from 

different blocks that map to the same location in the cache

Memory Hierarchy Basics

18
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• Speculative and multithreaded processors may execute 
other instructions during a miss

– Reduces performance impact of misses

Memory Hierarchy Basics
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• Q1: Where can a block be placed in the upper level? 

– Block placement
• Fully Associative, Set Associative, Direct Mapped

• Q2: How is a block found if it is in the upper level? 

– Block identification
• Tag/Block

• Q3: Which block should be replaced on a miss? 

– Block replacement
• Random, LRU, FIFO

– LRU (Least Recently Used), FIFO (First In-First Out) 

• Q4: What happens on a write?

– Write strategy
• Write Back or Write Through (with Write Buffer)

Traditional Four Questions for Memory Hierarchy Designers
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• Block 12 placed in an 8-block cache:
– Fully associative, direct mapped, 2-way set associative

– S.A. Mapping = (Block Number) Modulo (Number Sets)

Cache

01234567 0123456701234567

Memory

1111111111222222222233
01234567890123456789012345678901

Fully Mapped
(fully associative)

Directly Mapped
(1-way associative)

(12 mod 8) = 4

2-Way Associative
(12 mod 4) = 0

Q1: Where can a block be placed in the upper level? 

21

*4*0 *8 *C

Cache

0400 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C 40 44 48 4C

Memory

address maps to block:

location = (block address MOD # blocks in cache)

Direct Mapped Block Placement
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0400 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C 40 44 48 4C

Cache

Memory

arbitrary block mapping

location = any

Fully Associative Block Placement
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0400 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C

*4*0 *8 *C

40 44 48 4C

Cache

Memory

*0 *4 *8 *C

Set 0 Set 1 Set 2 Set 3

address maps to set:

location = (block address MOD # sets in cache)

(arbitrary location in set)

Set-Associative Block Placement

24



Copyright 2000 N. AYDIN. All rights 

reserved. 5

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index, 

expands tag

Block
Offset

Block Address

IndexTag

Q2: How is a block found if it is in the upper level?

25

CACHE SRAM

ADDR

DATA[31:0]

0x00001C0 0xff083c2d

0

1 0x0000000 0x00000021

1 0x0000000 0x00000103

0

0

1

0 0x23F0210 0x00000009

1

TagV Data

=

030x0000000

DATA[58:32]DATA[59]

DATA HITADDRESS =1Tag
Cache

Index Byte Offset

Direct-Mapped Cache Design

26

• Key idea: 

– Divide cache into sets

– Allow block anywhere in a set

• Advantages:

– Better hit rate

• Disadvantage:

– More tag bits

– More hardware

– Higher access time

Address

22 8

V TagIndex

0

1

2

253

254

255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0

A Four-Way Set-Associative Cache

Set Associative Cache Design

27

tag 11110111 data 1111000011110000101011=

• Key idea: set size of one block

– 1 comparator required for each block

– No address decoding

– Practical only for small caches due to hardware 

demands

tag 00011100 data 0000111100001111111101=

=

=

=

=

tag 11111110

tag 00000011

tag 11100110

tag 11110111 data 1111000011110000101011

data 0000000000001111111100

data 1110111100001110000001

data 1111111111111111111111

tag in 11110111 data out 1111000011110000101011

Fully Associative Cache Design

28

• Easy for Direct Mapped

• Set Associative or Fully Associative:
– Random

– LRU (Least Recently Used)

Assoc:       2-way 4-way 8-way

Size LRU    Ran    LRU Ran    LRU Ran

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q3: Which block should be replaced on a miss?

29

After a cache read miss, if there are no empty cache 

blocks, which block should be removed from the cache?

A randomly chosen block?

Easy to implement, how 

well does it work?

The Least Recently Used 

(LRU) block? Appealing,

but hard to implement for 

high associativity

Miss Rate for 2-way Set Associative Cache

Also,

try

other

LRU

approx.

Size Random LRU

16 KB 5.7% 5.2%

64 KB 2.0% 1.9%

256 KB 1.17% 1.15%

Q3: Which block should be replaced on a miss?

30
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• Write-through: all writes update cache and underlying 
memory/cache
– Can always discard cached data - most up-to-date data is in 

memory

– Cache control bit: only a valid bit

• Write-back: all writes simply update cache
– Can’t just discard cached data - may have to write it back to 

memory

– Cache control bits: both valid and dirty bits

• Other Advantages:
– Write-through:

• memory (or other processors) always have latest data

• Simpler management of cache

– Write-back:
• much lower bandwidth, since data often overwritten multiple times

• Better tolerance to long-latency memory?

Q4: What happens on a write?

31

• Write allocate: allocate new cache line in 

cache
– Usually means that you have to do a “read miss” to fill in rest of 

the cache-line!

– Alternative: per/word valid bits

• Write non-allocate (or “write-around”):
– Simply send write data through to underlying memory/cache -

don’t allocate new cache line!

Write Policy: What happens on write-miss?

32

Write-Through Write-Back

Policy

Data written to cache 

block

also written to lower-

level memory

Write data only to the 
cache

Update lower level 
when a block falls out 

of the cache

Debug Easy Hard

Do read misses 

produce writes?
No Yes

Do repeated writes 

make it to lower 

level?

Yes No

Additional option (on miss)-- let writes to an un-cached 

address; allocate a new cache line (“write-allocate”). 

Q4: What happens on a write?

33

Q. Why a write buffer ? 

Processor
Cache

Write Buffer

Lower 

Level 

Memory

Holds data awaiting write-through to 

lower level memory

A. So CPU doesn’t stall 

Q. Why a buffer, why 

not just one register ?

A. Bursts of writes are

common.

Q. Are Read After Write 

(RAW) hazards an issue 

for write buffer?

A. Yes!  Drain buffer before 

next read, or send read 1st

after check write buffers.

Write Buffers for Write-Through Caches

34

Reducing Cache Misses: 1. Larger Block Size

• Using the principle of locality. The larger the block, 

the greater the chance parts of it will be used again.

Block Size (bytes)   

Miss 

Rate 

0%

5%

10%

15%

20%

25%

1
6

3
2

6
4

1
2

8

2
5

6

1K

4K

16K

64K

256K
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• One way to reduce the miss rate is to increase 

the block size
– Take advantage of spatial locality

– Decreases compulsory misses

• However, larger blocks have disadvantages
– May increase the miss penalty (need to get more data)

– May increase hit time (need to read more data from cache and 

larger mux)

– May increase miss rate, since conflict misses

• Increasing the block size can help, but don’t 

overdo it.

Increasing Block Size

36
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Block Size vs. Cache Measures

• Increasing Block Size generally increases Miss 

Penalty and decreases Miss Rate

• As the block size increases the AMAT starts to 

decrease, but eventually increases

37

Miss RateMiss Penalty Avg. Memory Access TimeX =Hit Time +

Block Size Block Size Block Size

• Increasing associativity helps reduce conflict 
misses

• 2:1 Cache Rule: 
– The miss rate of a direct mapped cache of size N is about equal to 

the miss rate of a 2-way set associative cache of size N/2

– For example, the miss rate of a 32 Kbyte direct mapped cache is 
about equal to the miss rate of a 16 Kbyte 2-way set associative 
cache

• Disadvantages of higher associativity
– Need to do large number of comparisons

– Need n-to-1 multiplexor for n-way set associative

– Could increase hit time

– Consume more power

38

Reducing Cache Misses: Higher Associativity

Cache Size Associativity

(KB) 1-way 2-way 4-way 8-way

1 7.65 6.60 6.22 5.44

2 5.90 4.90 4.62 4.09

4 4.60 3.95 3.57 3.19

8 3.30 3.00 2.87 2.59

16 2.45 2.20 2.12 2.04

32 2.00 1.80 1.77 1.79

64 1.70 1.60 1.57 1.59

128 1.50 1.45 1.42 1.44

Red means A.M.A.T. not improved by more associativity

Does not take into account effect of slower clock on rest of program

39

AMAT vs. Associativity

• Miss-oriented Approach to Memory Access:

– CPIExecution includes ALU and Memory instructions

CycleTimeyMissPenaltMissRate
Inst

MemAccess

Execution
CPIICCPUtime 










CycleTimeyMissPenalt
Inst

MemMisses

Execution
CPIICCPUtime 










• Separating out Memory component entirely
– AMAT = Average Memory Access Time

– CPIALUOps does not include memory instructions

CycleTimeAMAT
Inst

MemAccess
CPI

Inst

AluOps
ICCPUtime

AluOps










yMissPenaltMissRateHitTimeAMAT 

 

 DataDataData

InstInstInst

yMissPenaltMissRateHitTime

yMissPenaltMissRateHitTime




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Cache performance

• Suppose a processor executes at 
– Clock Rate = 200 MHz (5 ns per cycle), Ideal (no misses) CPI = 1.1 

– 50% arith/logic, 30% ld/st, 20% control

• Suppose that 10% of memory operations get 50 cycle 
miss penalty

• Suppose that 1% of instructions get same miss penalty

• CPI = ideal CPI + average stalls per instruction
1.1(cycles/ins)  + [ 0.30 (DataMops/ins) 

x 0.10 (miss/DataMop) x 50 (cycle/miss)] + [ 1 (InstMop/ins) 
x 0.01 (miss/InstMop) x 50 (cycle/miss)] 

= (1.1 +  1.5 + .5) cycle/ins = 3.1 

• 58% of the time the proc is stalled waiting for memory!
– AMAT=(1/1.3)x[1+0.01x50]+(0.3/1.3)x[1+0.1x50]=2.54

41

Impact on Performance

• Unified vs. Separate I&D

• Example:

– 16KB I&D: Inst miss rate=0.64%, Data miss rate=6.47%
– 32KB unified: Aggregate miss rate=1.99%

• Which is better (ignore L2 cache)?
– Assume 33% data ops  75% accesses from instr. (1.0/1.33)
– hit time=1, miss time=50
– Note that data hit has 1 stall for unified cache (only one port)

AMATHarvard=75%x(1+0.64%x50)+25%x(1+6.47%x50) =  2.05
AMATUnified=75%x(1+1.99%x50)+25%x(1+1+1.99%x50)= 2.24

ProcI-Cache-1

Proc

Unified
Cache-1

Unified
Cache-2

D-Cache-1

Proc

Unified
Cache-2

42

Unified vs. Split Caches
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• improve cache and memory access times:

)***(* TimeClockCycleyMissPenaltMissRateCPIICCPUtime
nInstructio

ssMemoryAcce

Execution 

Average Memory Access Time  =  Hit Time  +  Miss Rate  *  Miss Penalty

Reducing each of these!

Simultaneously?

• Improve performance by:
• Reduce the miss rate, 
• Reduce the miss penalty, or
• Reduce the time to hit in the cache. 

43

Improve Cache Performance

• Six basic cache optimizations:
– Larger block size

• Reduces compulsory misses

• Increases capacity and conflict misses, increases miss penalty

– Larger total cache capacity to reduce miss rate
• Increases hit time, increases power consumption

– Higher associativity
• Reduces conflict misses

• Increases hit time, increases power consumption

– Higher number of cache levels
• Reduces overall memory access time

– Giving priority to read misses over writes
• Reduces miss penalty

– Avoiding address translation in cache indexing
• Reduces hit time

44

Memory Hierarchy Basics

• 3 Cs: Compulsory, Capacity, Conflict
0. Larger cache
1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Misses by Compiler Optimizations

• Danger of concentrating on just one parameter!
• Prefetching comes in two flavors:

– Binding prefetch: Requests load directly into register.
• Must be correct address and register!

– Non-Binding prefetch: Load into cache.  
• Can be incorrect.  Frees HW/SW to guess!

CPUtime  IC  CPI
Execution


Memory  accesses

Instruction
Miss rate Miss  penalty






Clock  cycle time

45

Miss Rate Reduction

• Classifying Misses: 3 Cs
– Compulsory—The first access to a block is not in the 

cache, so the block must be brought into the cache. Also 
called cold start misses or first reference misses.
(Misses in even an Infinite Cache)

– Capacity—If the cache cannot contain all the blocks 
needed during execution of a program, capacity misses will 
occur due to blocks being discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

– Conflict—If block-placement strategy is set associative or 
direct mapped, conflict misses (in addition to compulsory 
& capacity misses) will occur because a block can be 
discarded and later retrieved if too many blocks map to its 
set. Also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)

• 4th “C”:
– Coherence - Misses caused by cache coherence.

46

Where to misses come from?

Cache Size (KB)   
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3Cs Absolute Miss Rate (SPEC92)

• Old rule of thumb: 2x size => 25% cut in miss rate

• What does it reduce?

• Thrashing reduction!!!

Cache Size (KB)   

M
is

s
 R

a
te

 p
e

r 
T

y
p

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way

4-way

8-way

Capacity    

Compulsory    

48

0. Cache Size
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• Assume total cache size not changed:

• What happens if:

1) Change Block Size: 

2) Change Associativity: 

3) Change Compiler: 

Which of 3Cs is obviously affected?

49

Cache Organization?

Block Size (bytes)   

Miss 

Rate 

0%

5%

10%

15%

20%

25%

1
6

3
2

6
4

1
2

8

2
5

6

1K

4K

16K

64K

256K

Reduced 
compulsory

misses
Increased
Conflict
Misses

What else drives up block size?

50

1. Larger Block Size (fixed size & assoc)

Cache Size (KB)   
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2. Higher Associativity

Cache Size (KB)   

M
is

s
 R

a
te

 p
e

r 
T

y
p

e

0%

20%

40%

60%

80%

100%

1 2 4 8

1
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3
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6
4

1
2

8

1-way

2-way
4-way

8-way

Capacity   

Compulsory    

Conflict

Flaws: for fixed block size

Good: insight => invention
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3Cs Relative Miss Rate

• Beware: Execution time is only final measure!

• Why is cycle time tied to hit time?

• Will Clock Cycle time increase?

– Hill [1988] suggested hit time for 2-way vs. 1-way 

external cache +10%, 

internal + 2% 

– suggested big and dumb caches

Effective cycle time of assoc

pzrbski ISCA

53

Associativity vs. Cycle Time

• Example: assume CCT = 1.10 for 2-way, 1.12 
for 4-way, 1.14 for 8-way vs. CCT direct 
mapped

Cache Size Associativity

(KB) 1-way 2-way 4-way 8-way

1 2.33 2.15 2.07 2.01

2 1.98 1.86 1.76 1.68

4 1.72 1.67 1.61 1.53

8 1.46 1.48 1.47 1.43

16 1.29 1.32 1.32 1.32

32 1.20 1.24 1.25 1.27

64 1.14 1.20 1.21 1.23

128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)

54

Example: Avg. Memory Access Time vs. Miss Rate
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• Fast Hit Time + Low Conflict => 

Victim Cache

• How to combine fast hit time of 

direct mapped 

yet still avoid conflict misses?

• Add buffer to place data discarded 

from cache

• Jouppi [1990]: 4-entry victim 

cache removed 20% to 95% of 

conflicts for a 4 KB direct mapped 

data cache

• Used in Alpha, HP machines

To Next Lower Level In
Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

55

3. Victim Cache

• How to combine fast hit time of Direct Mapped and have the lower conflict 
misses of 2-way SA cache? 

• Divide cache: on a miss, check other half of cache to see if there, if so have a 
pseudo-hit (slow hit)

• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
– Better for caches not tied directly to  processor (L2)

– Used in MIPS R1000 L2 cache, similar in UltraSPARC

Hit Time

Pseudo Hit Time Miss Penalty

Time

56

4. Pseudo-Associativity

• E.g., Instruction Prefetching

– Alpha 21064 fetches 2 blocks on a miss

– Extra block placed in “stream buffer”

– On miss check stream buffer

• Works with data blocks too:

– Jouppi [1990] 1 data stream buffer got 25% misses 
from 4KB cache; 4 streams got 43%

– Palacharla & Kessler [1994] for scientific programs for 
8 streams got 50% to 70% of misses from 
2 64KB, 4-way set associative caches

• Prefetching relies on having extra memory 
bandwidth that can be used without penalty

57

5. Hardware Prefetching of Instructions & Data 

• Data Prefetch
– Load data into register (HP PA-RISC loads)
– Cache Prefetch: load into cache (MIPS IV, PowerPC, 

SPARC v. 9)
– Special prefetching instructions cannot cause faults; a 

form of speculative execution

• Prefetching comes in two flavors:
– Binding prefetch: Requests load directly into register.

• Must be correct address and register!

– Non-Binding prefetch: Load into cache.  
• Can be incorrect. Faults?

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
– Higher superscalar reduces difficulty of issue bandwidth

58

6. Software Prefetching Data

• McFarling [1989] reduced caches misses by 75% 
on 8KB direct mapped cache, 4 byte blocks in software

• Instructions

– Reorder procedures in memory so as to reduce conflict misses

– Profiling to look at conflicts(using tools they developed)

• Data

– Merging Arrays: improve spatial locality by single array of 
compound elements vs. 2 arrays

– Loop Interchange: change nesting of loops to access data in order 
stored in memory

– Loop Fusion: Combine 2 independent loops that have same 
looping and some variables overlap

– Blocking: Improve temporal locality by accessing “blocks” of 
data repeatedly vs. going down whole columns or rows
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7. Compiler Optimizations

Performance Improvement           

1 1.5 2 2.5 3

compress

cholesky

(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged

arrays

loop

interchange

loop fusion blocking
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Summary of Compiler Optimizations to Reduce Cache 

Misses (by hand)
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1. Reduce the miss rate, 

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache. 

61

Improving Cache Performance

• Four techniques
– Read priority over write on miss

– Early Restart and Critical Word First on miss

– Non-blocking Caches (Hit under Miss, Miss under Miss)

– Second Level Cache

• Can be applied recursively to Multilevel Caches
– Danger is that time to DRAM will grow with multiple levels in between

– First attempts at L2 caches can make things worse, since increased worst 
case is worse

• Out-of-order CPU can hide L1 data cache miss 
(3–5 clocks), but stall on L2 miss (40–100 
clocks)?

CPUtime  IC  CPI
Execution


Memory  accesses

Instruction
Miss rate Miss  penalty






Clock  cycle time
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Reducing Miss Penalty

write
buffer

CPU

in out

DRAM   
(or lower mem)

Write Buffer
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1. Read Priority over Write on Miss

• Write-through w/ write buffers => RAW conflicts 

with main memory reads on cache misses
– If simply wait for write buffer to empty, might increase read miss penalty 

(old MIPS 1000 by 50% )

– Check write buffer contents before read; 

if no conflicts, let the memory access continue

• Write-back want buffer to hold displaced blocks
– Read miss replacing dirty block

– Normal: Write dirty block to memory, and then do the read

– Instead copy the dirty block to a write buffer, then do the read, and then do 

the write

– CPU stall less since restarts as soon as do read
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1. Read Priority over Write on Miss

• Don’t wait for full block to be loaded before restarting 

CPU

– Early restart—As soon as the requested word of the block 

arrives, send it to the CPU and let the CPU continue execution

– Critical Word First—Request the missed word first from 

memory and send it to the CPU as soon as it arrives; let the 

CPU continue execution while filling the rest of the words in 

the block. Also called wrapped fetch and requested word  first

• Generally useful only in large blocks, 

• Spatial locality => tend to want next sequential word, so 

not clear if benefit by early restart

block
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2. Early Restart and Critical Word First

• Non-blocking cache or  lockup-free cache allow data 
cache to continue to supply cache hits during a miss

– requires F/E bits on registers or out-of-order execution

– requires multi-bank memories

• “hit under miss”  reduces the effective miss penalty by 
working during miss vs.. ignoring CPU requests

• “hit under multiple miss” or “miss under miss”  may 
further lower the effective miss penalty by overlapping 
multiple misses

– Significantly increases the complexity of the cache controller 
as there can be multiple outstanding memory accesses

– Requires multiples memory banks (otherwise cannot support)

– Pentium Pro allows 4 outstanding memory misses
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3. Non-blocking Caches
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• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26

• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19

• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss
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Value of Hit Under Miss for SPEC

• L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 +

Miss RateL1 x (Hit TimeL2 + Miss RateL2 + Miss PenaltyL2)

• Definitions:
– Local miss rate— misses in this cache divided by the 

total number of memory accesses to this cache (Miss 
rateL2)

– Global miss rate—misses in this cache divided by the 
total number of memory accesses generated by the CPU 

– Global Miss Rate is what matters
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4. Add a Second-level Cache

• 32 KByte 1st level cache;
Increasing 2nd level cache

• Global miss rate close to 
single level cache rate 
provided L2 >> L1

• Don’t use local miss rate

• L2 not tied to CPU clock 
cycle!

• Cost & A.M.A.T.

• Generally Fast Hit Times 
and fewer misses

• Since hits are few, target 
miss reduction

Linear

Log

Cache Size

Cache Size
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Comparing Local and Global Miss Rates

• Reducing Miss Rate

1. Reduce Misses via Larger Block Size

2. Reduce Conflict Misses via Higher Associativity

3. Reducing Conflict Misses via Victim Cache

4. Reducing Conflict Misses via Pseudo-Associativity

5. Reducing Misses by HW Prefetching Instr, Data

6. Reducing Misses by SW Prefetching Data

7. Reducing Capacity/Conf. Misses by Compiler  

Optimizations
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Reducing Misses: Which apply to L2 Cache?

Relative CPU Time   

Block Size   

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

16 32 64 128 256 512

1.36
1.28 1.27

1.34

1.54

1.95

• 32KB L1, 8 byte path to memory
71

L2 Cache Block Size & A.M.A.T.

1. Reduce the miss rate, 

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache. 

72

Improving Cache Performance
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• Why Alpha 21164 has 8KB Instruction and 

8KB data cache + 96KB second level cache?
– Small data cache and clock rate

• Direct Mapped, on chip

73

1. Small and Simple Caches

• Send virtual address to cache? Called Virtually 
Addressed Cache or just Virtual Cache vs.  Physical 
Cache
– Every time process is switched logically must flush the cache; otherwise get 

false hits
• Cost is time to flush + “compulsory” misses from empty cache

– Dealing with aliases (sometimes called synonyms); 
Two different virtual addresses map  to same physical address

– I/O must interact with cache, so need virtual address

• Solution to aliases
– HW guarantees every cache block has unique physical address

– SW guarantee : lower n bits must have same address; 
as long as covers index field & direct mapped, they must be unique; called page 
coloring

• Solution to cache flush
– Add process identifier tag that identifies process as well as address within 

process: can’t get a hit if wrong process
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2. Avoiding Address Translation

CPU

TB

$

MEM

VA

PA

PA

Conventional
Organization

CPU

$

TB

MEM

VA

VA

PA

Virtually Addressed Cache
Translate only on miss

Synonym Problem

CPU

$ TB

MEM

VA

PA

Tags

PA

Overlap $ access
with VA translation:
requires $ index to
remain invariant

across translation

VA

Tags

L2 $
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Virtually Addressed Caches

• Page table is a large data structure in memory
• Two memory accesses for every load, store, or 

instruction fetch!!!
• Virtually addressed cache?

– synonym problem

• Cache the address translations?
• If index is physical part of address, can start tag 

access in parallel with translation so that can 
compare to physical tag

CPU
Trans-
lation Cache

Main
Memory

VA PA miss

hit
data
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Address Translation

CPU
TLB

Lookup
Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 tt1/2 t

Translation
with a TLB

• Just like any other cache, the TLB can be organized as fully 

associative, set associative, or direct mapped

• TLBs are usually small, typically not more than 128 - 256 entries 

even on high end machines.  This permits fully Associative 

lookup on these machines.  

– Most mid-range machines use small n-way set associative organizations.
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Translation Lookaside Buffers

A way to speed up translation is to use a special cache 
of recently used page table entries  -- this has many 
names, but the most frequently used is Translation 
Lookaside Buffer or TLB

Virtual Address   Physical Address   Dirty   Ref   Valid   Access

Really just a cache on the page table mappings

TLB access time comparable to cache access time
(much less than main memory access time)

78

Translation Lookaside Buffer
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• Pipeline Tag Check and Update Cache as separate 
stages; current write tag check & previous write 
cache update 

• Only STORES in the pipeline; empty during a miss

Store r2, (r1)    Check r1
Add                --
Sub                --
Store r4, (r3)    M[r1]<-r2 & check r3

• “Delayed Write Buffer”; must be checked on 
reads; either complete write or read from buffer
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3. Pipelined Writes

• 8 Stage Pipeline:
– IF–first half of fetching of instruction; PC selection happens 

here as well as initiation of instruction cache access.

– IS–second half of access to instruction cache. 

– RF–instruction decode and register fetch, hazard checking 
and also instruction cache hit detection.

– EX–execution, which includes effective address calculation, 
ALU operation, and branch target computation and 
condition evaluation.

– DF–data fetch, first half of access to data cache.

– DS–second half of access to data cache.

– TC–tag check, determine whether the data cache access hit.

– WB–write back for loads and register-register operations.

• What is impact on Load delay? 
– Need 2 instructions between a load and its use!

80

Case Study: MIPS R4000 

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

TWO Cycle
Load Latency

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

THREE Cycle
Branch Latency

(conditions evaluated
during EX phase)

Delay slot plus two stalls
Branch likely cancels delay slot if not taken
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Case Study: MIPS R4000

• Not ideal CPI of 1:
– Load stalls (1 or 2 clock cycles)

– Branch stalls (2 cycles + unfilled slots)

– FP result stalls: RAW data hazard (latency)

– FP structural stalls: Not enough FP hardware (parallelism)
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R4000 Performance

Technique MR MP HT Complexity

Larger Block Size + – 0

Higher Associativity + – 1

Victim Caches + 2

Pseudo-Associative Caches + 2

HW Prefetching of Instr/Data + 2

Compiler Controlled Prefetching + 3

Compiler Reduce Misses + 0

Priority to Read Misses + 1

Early Restart & Critical Word 1st + 2

Non-Blocking Caches + 3

Second Level  Caches + 2

Better memory system + 3

Small & Simple Caches – + 0

Avoiding Address Translation + 2

Pipelining Caches + 2
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Cache Optimization Summary

• Superscalar CPU & Number Cache Ports must 
match: number memory accesses/cycle?

• Speculative Execution and non-faulting option on 
memory/TLB

• Parallel Execution vs. Cache locality
– Want far separation to find independent operations vs.. 

want reuse of data accesses to avoid misses

• I/O and consistency  of data between cache and 
memory
– Caches => multiple copies of data

– Consistency  by HW or by SW?

– Where connect I/O to computer?

84

Cache Cross Cutting Issues
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Alpha Memory Performance: Miss Rates of SPEC92
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• Instruction stall: branch mispredict (green);

• Data cache (blue); Instruction cache (yellow); L2$ (pink) 

Other: compute + reg conflicts, structural conflicts
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Alpha CPI Components

• 4KB Data cache 

miss rate 8%,12%, 

or 28%?

• 1KB Instr cache 

miss rate 0%,3%,or 

10%?

• Alpha vs.. MIPS

for 8KB Data $:

17% vs. 10%

• Why 2X Alpha v. 

MIPS?

0%
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Miss 
Rate

Cache Size (KB)
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D: gcc
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I: gcc
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I$, gcc

I$, esp

I$, Tom
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Predicting Cache Performance from Different 

Prog. (ISA, compiler, ...)

• Reduce hit time
– Small and simple first-level caches

– Way prediction

• Increase bandwidth
– Pipelined caches, multibanked caches, non-blocking 

caches

• Reduce miss penalty
– Critical word first, merging write buffers

• Reduce miss rate
– Compiler optimizations

• Reduce miss penalty or miss rate via 
parallelization
– Hardware or compiler prefetching
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Advanced Optimizations

• Small and simple first level caches

– Critical timing path:

• addressing tag memory, then

• comparing tags, then

• selecting correct set

– Direct-mapped caches can overlap tag compare and 
transmission of data

– Lower associativity reduces power because fewer 
cache lines are accessed

89

Advanced Optimizations

Access time vs. size and associativity

90

L1 Size and Associativity
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Energy per read vs. size and associativity

91

L1 Size and Associativity

• To improve hit time, predict the way to pre-set 
mux

– Mis-prediction gives longer hit time

– Prediction accuracy

• > 90% for two-way

• > 80% for four-way

• I-cache has better accuracy than D-cache

– First used on MIPS R10000 in mid-90s

– Used on ARM Cortex-A8

• Extend to predict block as well

– “Way selection”

– Increases mis-prediction penalty
92

Way Prediction

• Pipeline cache access to improve bandwidth

– Examples:

• Pentium:  1 cycle

• Pentium Pro – Pentium III:  2 cycles

• Pentium 4 – Core i7:  4 cycles

• Increases branch mis-prediction penalty

• Makes it easier to increase associativity

93

Pipelined Caches

• Organize cache as independent banks to support 
simultaneous access

– ARM Cortex-A8 supports 1-4 banks for L2

– Intel i7 supports 4 banks for L1 and 8 banks for L2

• Interleave banks according to block address

94

Multibanked Caches

• Allow hits before previous misses complete
– “Hit under miss”

– “Hit under multiple miss”

• L2 must support this

• In general, processors can hide L1 miss penalty but not 
L2 miss penalty

95

Nonblocking Caches

• Critical word first

– Request missed word from memory first

– Send it to the processor as soon as it arrives

• Early restart

– Request words in normal order

– Send missed work to the processor as soon as it arrives

• Effectiveness of these strategies depends on block 
size and likelihood of another access to the portion 
of the block that has not yet been fetched

96

Critical Word First, Early Restart
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• When storing to a block that is already pending in the write 
buffer, update write buffer

• Reduces stalls due to full write buffer

• Do not apply to I/O addresses

No write 

buffering

Write buffering
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Merging Write Buffer

• Loop Interchange

– Swap nested loops to access memory in 
sequential order

• Blocking

– Instead of accessing entire rows or columns, 
subdivide matrices into blocks

– Requires more memory accesses but improves 
locality of accesses
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Compiler Optimizations

for (i = 0; i < N; i = i + 1)

for (j = 0; j < N; j = j + 1)

{

r = 0;

for (k = 0; k < N; k = k + 1)

r = r + y[i][k]*z[k][j];

x[i][j] = r;

};

99

Blocking

for (jj = 0; jj < N; jj = jj + B)

for (kk = 0; kk < N; kk = kk + B)

for (i = 0; i < N; i = i + 1)

for (j = jj; j < min(jj + B,N); j = j + 1)

{

r = 0;

for (k = kk; k < min(kk + B,N); k = k + 1)

r = r + y[i][k]*z[k][j];

x[i][j] = x[i][j] + r;

};
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Blocking

• Fetch two blocks on miss (include next sequential 
block)

Pentium 4 Pre-fetching

101

Hardware Prefetching

• Insert prefetch instructions before data is needed

• Non-faulting:  prefetch doesn’t cause exceptions

• Register prefetch

– Loads data into register

• Cache prefetch

– Loads data into cache

• Combine with loop unrolling and software 
pipelining

102

Compiler Prefetching
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• 128 MiB to 1 GiB

• Smaller blocks require substantial tag storage

• Larger blocks are potentially inefficient

• One approach (L-H):

– Each SDRAM row is a block index

– Each row contains set of tags and 29 data segments

– 29-set associative

– Hit requires a CAS

103

Use HBM to Extend Hierarchy

• Another approach (Alloy cache):

– Mold tag and data together

– Use direct mapped

• Both schemes require two DRAM accesses for 
misses

– Two solutions:
• Use map to keep track of blocks

• Predict likely misses

104

Use HBM to Extend Hierarchy

105

Use HBM to Extend Hierarchy

106

Summary

http://www.bit-tech.net/hardware/memory/2007/11/15/the_secrets_of_pc_memory_part_1/3
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Computer Memory Hierarchy

• Performance metrics

– Latency is concern of cache

– Bandwidth is concern of multiprocessors and I/O

– Access time
• Time between read request and when desired word arrives

– Cycle time
• Minimum time between unrelated requests to memory

• SRAM memory has low latency, use for cache

• Organize DRAM chips into many banks for high 
bandwidth, use for main memory

108

Memory Technology and Optimizations
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• SRAM

– Requires low power to retain bit

– Requires 6 transistors/bit

• DRAM

– Must be re-written after being read

– Must also be periodically refeshed
• Every ~ 8 ms (roughly 5% of time)

• Each row can be refreshed simultaneously

– One transistor/bit

– Address lines are multiplexed:
• Upper half of address:  row access strobe (RAS)

• Lower half of address:  column access strobe (CAS)

109

Memory Technology

110

A SRAM Example

111

A DRAM Example

112

Internal Organization of DRAM

• Amdahl:
– Memory capacity should grow linearly with processor speed

– Unfortunately, memory capacity and speed has not kept pace with 
processors

• Some optimizations:
– Multiple accesses to same row

– Synchronous DRAM

• Added clock to DRAM interface

• Burst mode with critical word first

– Wider interfaces

– Double data rate (DDR)

– Multiple banks on each DRAM device

113

Memory Technology

114

Memory Optimizations
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115

Memory Optimizations

116

DIMM Dual Inline Memory Module

• DDR:

– DDR2
• Lower power (2.5 V -> 1.8 V)

• Higher clock rates (266 MHz, 333 MHz, 400 MHz)

– DDR3
• 1.5 V

• 800 MHz

– DDR4
• 1-1.2 V

• 1333 MHz

• GDDR5 is graphics memory based on DDR3

117

Memory Optimizations

• Reducing power in SDRAMs:

– Lower voltage

– Low power mode (ignores clock, continues to refresh)

• Graphics memory:

– Achieve 2-5 X bandwidth per DRAM vs. DDR3
• Wider interfaces (32 vs. 16 bit)

• Higher clock rate
– Possible because they are attached via soldering instead of socketted

DIMM modules

118

Memory Optimizations

119

Memory Power Consumption

• Stacked DRAMs in same package as processor

– High Bandwidth Memory (HBM)

120

Stacked/Embedded DRAMs
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• Type of EEPROM

• Types:  NAND (denser) and NOR (faster)

• NAND Flash:

– Reads are sequential, reads entire page (.5 to 4 KiB)

– 25 us for first byte, 40 MiB/s for subsequent bytes

– SDRAM:  40 ns for first byte, 4.8 GB/s for subsequent 
bytes

– 2 KiB transfer: 75 uS vs 500 ns for SDRAM, 150X 
slower

– 300 to 500X faster than magnetic disk

121

Flash Memory

• Must be erased (in blocks) before being 
overwritten

• Nonvolatile, can use as little as zero power

• Limited number of write cycles (~100,000)

• $2/GiB, compared to $20-40/GiB for SDRAM and 
$0.09 GiB for magnetic disk

• Phase-Change/Memrister Memory

– Possibly 10X improvement in write performance and 
2X improvement in read performance

122

NAND Flash Memory

123

Solid State Drives

• Main storage component of Solid State Drive (SSD)

– USB Drive, cell phone, touch pad…

124

NAND Flash Memory

• Advantages of NAND flash
– Fast random read (25 us)

– Energy efficiency

– High reliability (no moving parts) compared to harddisks

• Widely deployed in high-end laptops
– Macbook air, ThinkPad X series, touch pad…

• Increasingly deployed in enterprise environment either as a 
secondary cache or main storage

125

NAND Flash Memory

• Disadvantages of SSD
– Garbage collection (GC) problem of SSD

• Stemmed from the out-of-place update characteristics

• Update requests invalidate old version of pages and then write new 
version of these pages to a new place

• Copy valid data to somewhere else (increasing number of IOs)

• Garbage collection is periodically started to erase victim blocks and copy 
valid pages to the free blocks (slow erase: 10xW,100xR)

– Blocks in the SSD have a limited number of erase cycles

• 100,000 for Single Level Chip (SLC), 5,000-10,000 for Multiple Level Chip 
(MLC), can be as low as 3,000

• May be quickly worn out in enterprise environment

– Performance is very unpredictable
• Due to unpredictable triggering of the time-consuming GC process

126

NAND Flash Memory
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• DRAM + Flash Memory

– Uses small DRAM as a cache to buffer writes and 

cache reads by leveraging access locality

– Uses large flash memory to store cold data

– Advantages

• Similar performance as DRAM

• Low power consumption

• Low costs

127

Hybrid Main Memory System

Attribute SSD HDD

Random access time 0.1 ms 5-10 ms

Bandwidth 100-500 MB/s 100 MB/s sequential

Price/GB 0.9$-2$ 0.1$

Size Up to 2TB, 250GB 

common

4TB

Power consumption 5 watts Up to 20 watts

Read/write symmetry No Yes

Noise No Yes (spin, rotate)

128

Comparison SSD - HDD

• Memory is susceptible to cosmic rays

• Soft errors:  dynamic errors

– Detected and fixed by error correcting codes (ECC)

• Hard errors:  permanent errors

– Use spare rows to replace defective rows

• Chipkill:  a RAID-like error recovery technique

129

Memory Dependability

130

Memory Dependability

• A Redundant Array of Inexpensive DRAM (RAID) 

processor chip is directly placed on the memory 

DIMM.  

• The RAID chip calculates an ECC checksum for the 

contents of the entire set of chips for each memory 

access and stores the result in extra memory space on 

the protected DIMM.  

• Thus, when a memory chip on the DIMM fails, the 

RAID result can be used to "back up" the lost data.

131

Memory Dependability Computer Memory Hierarchy

http://www.bit-tech.net/hardware/memory/2007/11/15/the_secrets_of_pc_memory_part_1/3

132
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CPU Memory

A0-A31 A0-A31

D0-D31 D0-D31

“Physical addresses” of memory locations 

Data

o All programs share one address space: The 

physical address space

o Machine language programs must be aware 

of the machine organization 

o No way to prevent a program from 

accessing any machine resource
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The Limits of Physical Addressing

CPU Memory

A0-A31 A0-A31

D0-D31 D0-D31

Data

• User programs run in a standardized virtual

address space

• Address Translation hardware, managed by the 

operating system (OS), maps virtual address to 

physical memory

“Physical 

Addresses”

Address
Translation

Virtual Physical

“Virtual Addresses”

•Hardware supports “modern” OS features: 

Protection, Translation, Sharing
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Solution:  Add a Layer of Indirection

• Translation:
– Program can be given consistent view of memory, even though physical memory is 

scrambled

– Makes multithreading reasonable (now used a lot!)

– Only the most important part of program (“Working Set”) must be in physical 
memory.

– Contiguous structures (like stacks) use only as much physical memory as necessary 
yet still grow later.

• Protection:
– Different threads (or processes) protected from each other.

– Different pages can be given special behavior

• (Read Only, Invisible to user programs, etc).

– Kernel data protected from User programs

– Very important for protection from malicious programs

• Sharing:
– Can map same physical page to multiple users

(“Shared memory”)
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Three Advantages of Virtual Memory

A machine 

usually supports

pages of a few 

sizes

(MIPS R4000):

Physical

Memory Space

A valid page table entry codes physical memory 

“frame” address for the page

A virtual address space

is divided into blocks

of memory called pages
frame

frame

frame

frame

A page table is indexed by a 

virtual address

virtual 

address

Page Table

OS manages 

the page 

table for 

each ASID

(Addr. Space 

ID)
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Page tables encode virtual address spaces

Physical Memory

Virtual Memory
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An Example of Page Table

Physical Memory

Virtual Memory

Page size:4KB
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Dividing the address space by a page size
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Physical Memory

Virtual Memory

Page size:4KB

P.P. 0

P.P. 1

P.P. 2

P.P. 3

V.P. 0

V.P. 1

V.P. 2

V.P. 3

V.P. 4

V.P. 5
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Virtual Page & Physical Page

Physical Memory

Virtual Memory

Page size:4KB

P.P. 0

P.P. 1

P.P. 2

P.P. 3

V.P. 0

V.P. 1

V.P. 2

V.P. 3

V.P. 4

V.P. 5

Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset

Physical Address
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Addressing

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset

Physical Address

Page Table Entry
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Addressing

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset

Physical Address

Page Table Entry

V P R D Physical Page No.

Valid/Present Bit

If set, page being pointed is 

resident in memory

Otherwise, on disk or not 

allocated 
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Addressing

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset

Physical Address

Page Table Entry

V P R D Physical Page No.

Protection Bits

Restrict access;

read-only, read/write, system-

only access
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Addressing

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset

Physical Address

Page Table Entry

V P R D Physical Page No.

Reference Bit

Needed by replacement policies

If set, page has been referenced
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Addressing
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Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset

Physical Address

Page Table Entry

V P R D Physical Page No.

Dirty Bit

If set, at least one word in page 

has been modified
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Page Table Entry

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset Physical Address

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.
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Page Table Entry

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset Physical Address

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

virtual address

147

Page Table Lookup

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset Physical Address

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

virtual address
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Page Table Lookup

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset Physical Address

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

virtual address
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Page Table Lookup

Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset Physical Address

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

virtual address
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Page Table Lookup
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Physical Memory

Virtual Memory
Virtual Page No. P. Offset

Virtual Address

Physical Page No. P. Offset
Physical Address

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

V P R D Physical Page No.

virtual address

physical address
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Page Table Lookup

Physical

Memory Space

• Page table maps virtual page numbers to physical 
frames (“PTE” = Page Table Entry)

• Virtual memory => treat memory  cache for disk
• 4 fundamental questions: placement, identification, 

replacement, and write policy?

Virtual Address

Page Table

index
into
page
table

Page Table
Base Reg

V
Access
Rights PA

V page no. offset
12

table located
in physical
memory

P page no. offset

12

Physical Address

frame

frame

frame

frame

virtual 

address

Page Table
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Details of Page Table

• Placement

– Operating systems allow blocks to be placed 

anywhere in main memory

• Identification

– Page Table, Inverted Page Table

• Replacement

– Almost all operating systems try to use LRU

• Write Policies

– Always write back
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4 Fundamental Questions

• Since Page Table is located in main memory, it 
takes one memory access latency to finish an 
address translation;

• As a result, a load/store operation from/to main 
memory needs two memory access latency in total;

• Considering the expensive memory access latency, 
the overhead of page table lookup should be 
optimized;

• How?

– Principle of Locality

– Caching
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Latency

“Physical 

Addresses”

CPU Memory

A0-A31 A0-A31

D0-D31 D0-D31

Data

TLB also contains

protection bits for virtual address

Virtual Physical

“Virtual Addresses”

Translation
Look-Aside

Buffer
(TLB)

Translation Look-Aside Buffer (TLB)

A small fully-associative cache of 

mappings from virtual to physical addresses

Fast common case: Virtual address is in TLB, 

process has permission to read/write it.  

What is     

the table 

of mappings   

that it caches?
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MIPS Address Translation: How does it work?

V=0  pages either 

reside on disk or 

have not yet been 

allocated.

OS handles V=0

“Page fault”

Physical and virtual 

pages must be the 

same size!

TLB

Page Table

2

0

1

3

virtual address

page off

2

frame page

2
50

physical address

page off

TLB caches 

page table 

entries.

MIPS handles TLB misses in 

software (random 

replacement). Other 

machines use hardware.

for ASID

Physical

frame

address
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The TLB caches page table entries
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Index Byte Select

ValidCache Tags Cache Data

Data out

Virtual Page Number Page Offset

Translation
Look-Aside

Buffer
(TLB)

Virtual

Physical

=

Hit

Cache Tag

This works, but ...

Q. What is the downside?

A. Inflexibility. Size of cache 

limited by page size.

Cache Block

Cache Block
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Can TLB and caching be overlapped?

VA: 64bits

PA: 40bits

Page size: 16KB

TLB: 2-way set 

associative, 256 

entries

Cache block: 64B

L1: direct-mapping, 

16KB

L2: 4-way set 

associative, 4MB

8
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• Protection via virtual memory

– Keeps processes in their own memory space

• Role of architecture

– Provide user mode and supervisor mode

– Protect certain aspects of CPU state

– Provide mechanisms for switching between user mode 
and supervisor mode

– Provide mechanisms to limit memory accesses

– Provide TLB to translate addresses
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Virtual Memory and Virtual Machines

• Supports isolation and security

• Sharing a computer among many unrelated users

• Enabled by raw speed of processors, making the overhead 
more acceptable

• Allows different ISAs and operating systems to be 
presented to user programs
– “System Virtual Machines”

– SVM software is called “virtual machine monitor” or “hypervisor”

– Individual virtual machines run under the monitor are called “guest 
VMs”
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Virtual Machines

• Guest software should:
– Behave on as if running on native hardware

– Not be able to change allocation of real system 
resources

• VMM should be able to “context switch” 
guests

• Hardware must allow:
– System and use processor modes

– Privileged subset of instructions for allocating system 
resources
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Requirements of VMM

• Virtual machine monitor (VMM) or hypervisor is software that supports 

VMs

• VMM determines how to map virtual resources to physical resources

• Physical resource may be time-shared, partitioned, or emulated in software 

• VMM is much smaller than a traditional OS; 

– isolation portion of a VMM is  10,000 lines of 

code
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Virtual Machine Monitors (VMMs)
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Virtual Machine Monitors (VMMs)
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Virtual Machine Monitors (VMMs)

• Each guest OS maintains its own set of page tables

– VMM adds a level of memory between physical and 
virtual memory called “real memory”

– VMM maintains shadow page table that maps guest 
virtual addresses to physical addresses

• Requires VMM to detect guest’s changes to its own page table

• Occurs naturally if accessing the page table pointer is a 
privileged operation
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Impact of VMs on Virtual Memory

• Objectives:

– Avoid flushing TLB

– Use nested page tables instead of shadow page tables

– Allow devices to use DMA to move data

– Allow guest OS’s to handle device interrupts

– For security:  allow programs to manage encrypted 
portions of code and data
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Extending the ISA for Virtualization

• Predicting cache performance of one program 

from another

• Simulating enough instructions to get accurate 

performance measures of the memory hierarchy

• Not deliverying high memory bandwidth in a 

cache-based system
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Fallacies and Pitfalls


