
Copyright 2000 N. AYDIN. All rights

reserved. 1

BLM6112

Advanced Computer Architecture
Fundamentals of Quantitative Design and

Analysis

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

1

Performance Metrics

• Objectives

– How can we meaningfully measure and compare

computer performance?

– Understand why program performance varies

• Understand how applications and the compiler impact

performance

• Understand how CPU impacts performance

• What trade-offs are involved in designing a CPU?

– Purchasing perspective vs design perspective

2

3

Outline

• Latency, delay, time

• Throughput

• Cost

• Power

• Energy

• Reliability

Forces on Computer Architecture

Computer

Architecture

Technology Programming

Languages

Operating

Systems History

Applications

4

What is Computer Architecture?

I/O systemInstr. Set Proc.

Compiler

Operating

System

Application

Digital Design

Circuit Design

Instruction Set
Architecture

Firmware

• Coordination of many levels of abstraction

– Under a rapidly changing set of forces

• Design, Measurement, and Evaluation

Datapath & Control

Layout

5

Computer Architecture is

The attributes of a [computing] system as seen by the

programmer, i.e., the conceptual structure and functional

behavior, as distinct from the organization of the data flows

and controls the logic design, and the physical

implementation.

Amdahl, Blaaw, and Brooks, 1964

SOFTWARE

6

mailto:naydin@yildiz.edu.tr

Copyright 2000 N. AYDIN. All rights

reserved. 2

A Changing Definition

• 1950s to 1960s: Computer Architecture Course

– Computer Arithmetic

• 1970s to mid 1980s: Computer Architecture Course

– Instruction Set Design, especially ISA appropriate for

compilers

• 1990s: Computer Architecture Course

– Design of CPU, memory system, I/O system,

Multiprocessors

7

The Instruction Set: a Critical Interface

instruction set

Software

Hardware

8

Instruction Set Architecture

SOFTWARE

• Organization of Programmable Storage

• Data Types & Data Structures Encodings &

Representations

• Instruction Formats

• Instruction (or Operation Code) Set

• Modes of Addressing and Accessing Data Items

and Instructions

• Exceptional Conditions

9

Computer Organization

• Capabilities & Performance Characteristics of Principal

Functional Units

– (e.g., Registers, ALU, Shifters, Logic Units, ...)

• Ways in which these components are interconnected

• Information flows between components

• Logic and means by which such information flow is controlled.

• Choreography of FUs to realize the ISA

• Register Transfer Level (RTL)

hardware design

10

Computer Technology

• Performance improvements:

– Improvements in semiconductor technology

• Feature size, clock speed

– Improvements in computer architectures

• Enabled by HLL compilers, UNIX

• Lead to RISC architectures

– Together have enabled:

• Lightweight computers

• Productivity-based managed/interpreted programming
languages

11

Growth in processor performance over 40 years

12

Copyright 2000 N. AYDIN. All rights

reserved. 3

Current Trends in Architecture

• Cannot continue to leverage Instruction-Level
Parallelism (ILP)

– Single processor performance improvement ended
in 2003

• New models for performance:

– Data-Level Parallelism (DLP)

– Thread-Level Parallelism (TLP)

– Request-Level Parallelism (RLP)

• These require explicit restructuring of the
application

13

Classes of Computers

• Personal Mobile Device (PMD)
– e.g. start phones, tablet computers

– Emphasis on energy efficiency and real-time

• Desktop Computing
– Emphasis on price-performance

• Servers
– Emphasis on availability, scalability, throughput

• Clusters / Warehouse Scale Computers
– Used for “Software as a Service (SaaS)”

– Emphasis on availability and price-performance

– Sub-class: Supercomputers, emphasis: floating-point performance and
fast internal networks

• Internet of Things/Embedded Computers
– Emphasis: price

14

A summary of the five mainstream computing classes and

their system characteristics

• Sales in 2015 included about
– 1.6 billion PMDs (90% cell phones),

– 275 million desktop PCs,

– 15 million servers.

– 19 billion embedded processors.

• In total, 14.8 billion ARM-technology-based chips were
shipped in 2015

15

Parallelism

• Parallelism at multiple levels is now the driving

force of computer design across all four classes

of computers,

– with energy and cost being the primary constraints.

• Classes of parallelism in applications:

– Data-Level Parallelism (DLP)

• arises because there are many data items that can be

operated on at the same time.

– Task-Level Parallelism (TLP)

• arises because tasks of work are created that can operate

independently and largely in parallel.

16

Parallelism

• Computer hardware in turn can exploit these

two kinds of application parallelism in four

major ways:

– Instruction-Level Parallelism (ILP)

• exploits data-level parallelism at modest levels with

compiler help using ideas like pipelining and at medium

levels using ideas like speculative execution.

– Vector architectures/Graphic Processor Units
(GPUs) and multimedia instruction sets

• exploit data-level parallelism by applying a single

instruction to a collection of data in parallel.

17

Parallelism

– Thread-Level Parallelism (TLP)
• exploits either data-level parallelism or task-level parallelism

in a tightly coupled hardware model that allows for interaction
between parallel threads.

– Request-Level Parallelism (RLP)
• exploits parallelism among largely decoupled tasks specified

by the programmer or the operating system.

• When Flynn (1966) studied the parallel computing
efforts in the 1960s, he found a simple
classification whose abbreviations we still use
today.
– He looked at the parallelism in the instruction and data

streams called for by the instructions at the most
constrained component of the multiprocessor and
placed all computers in one of four categories:

18

Copyright 2000 N. AYDIN. All rights

reserved. 4

Flynn’s Taxonomy

• Single instruction stream, single data stream (SISD)

– the uniprocessor

– it can exploit ILP

• Single instruction stream, multiple data streams
(SIMD)

– The same instruction is executed by multiple processors

using different data streams

– exploit DLP by applying the same operations to multiple

items of data in parallel
• Vector architectures

• Multimedia extensions

• Graphics processor units

19

Flynn’s Taxonomy

• Multiple instruction streams, single data stream
(MISD)

– No commercial implementation

• Multiple instruction streams, multiple data streams
(MIMD)

– Each processor fetches its own instructions and operates on

its own data, and it targets TLP

– can also exploit DLP

– more flexible than SIMD and thus more generally

applicable, but it is inherently more expensive than SIMD
• Tightly-coupled MIMD

• Loosely-coupled MIMD

20

Defining Computer Architecture

• “Old” view of computer architecture:

– Instruction Set Architecture (ISA) design

– i.e. decisions regarding:
• registers, memory addressing, addressing modes, instruction

operands, available operations, control flow instructions,
instruction encoding

• “Real” computer architecture:

– Specific requirements of the target machine

– Design to maximize performance within constraints:
• cost, power, and availability

– Includes ISA, microarchitecture, hardware

21

Instruction Set Architecture

• Class of ISA

– General-purpose registers

– Register-memory vs load-store

• RISC-V registers

– 32 g.p., 32 f.p.

Register Name Use Saver

x0 zero constant 0 n/a

x1 ra return addr caller

x2 sp stack ptr callee

x3 gp gbl ptr

x4 tp thread ptr

x5-x7 t0-t2 temporaries caller

x8 s0/fp saved/

frame ptr

callee

Register Name Use Saver

x9 s1 Saved callee

x10-x17 a0-a7 Arguments caller

x18-x27 s2-s11 Saved callee

x28-x31 t3-t6 Temporaries caller

f0-f7 ft0-ft7 FP temps caller

f8-f9 fs0-fs1 FP saved callee

f10-f17 fa0-fa7 FP arguments callee

f18-f27 fs2-fs21 FP saved callee

f28-f31 ft8-ft11 FP temps caller

22

Instruction Set Architecture

• Memory addressing

– RISC-V: byte addressed, aligned accesses faster

• Addressing modes

– RISC-V: Register, immediate, displacement (base+offset)

– Other examples: autoincrement, indexed, PC-relative

• Types and size of operands

– RISC-V: 8-bit, 32-bit, 64-bit

23

Instruction Set Architecture

• Operations

– RISC-V: data transfer, arithmetic, logical, control, floating

point

• See Fig. 1.5 in text, or The RISC-V Instruction Set Manual

• Control flow instructions

– Use content of registers (RISC-V) vs. status bits (x86,

ARMv7, ARMv8)

– Return address in register (RISC-V, ARMv7, ARMv8) vs.

on stack (x86)

• Encoding

– Fixed (RISC-V, ARMv7/v8 except compact instruction set)

vs. variable length (x86)

24

https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

Copyright 2000 N. AYDIN. All rights

reserved. 5

Trends in Technology

• Integrated circuit technology (Moore’s Law)

– Transistor density: 35%/year

– Die size: 10-20%/year

– Integration overall: 40-55%/year

• DRAM capacity: 25-40%/year (slowing)

– 8 Gb (2014), 16 Gb (2019), possibly no 32 Gb

• Flash capacity: 50-60%/year

– 8-10X cheaper/bit than DRAM

• Magnetic disk capacity: recently slowed to 5%/year

– Density increases may no longer be possible,
• may be increase from 7 to 9 platters

– 8-10X cheaper/bit then Flash

– 200-300X cheaper/bit than DRAM

25

Bandwidth and Latency

• Bandwidth or throughput

– Total work done in a given time

– 32,000-40,000X improvement for processors

– 300-1200X improvement for memory and disks

• Latency or response time

– Time between start and completion of an event

– 50-90X improvement for processors

– 6-8X improvement for memory and disks

26

Bandwidth and Latency

27

Log-log plot of bandwidth and latency milestones

Transistors and Wires

• Feature size

– Minimum size of transistor or wire in x or y
dimension

• 10 µm in 1971

• 0.011 µm in 2017

• 0.003 µm in 2021

– Transistor performance scales linearly

• Wire delay does not improve with feature size!

– Integration density scales quadratically

28

Power and Energy

• Problem:

– Get power in, get power out

• Thermal Design Power (TDP)

– Characterizes sustained power consumption

– Used as target for power supply and cooling system

– Lower than peak power (1.5X higher), higher than average
power consumption

• Clock rate can be reduced dynamically to limit power
consumption

• Energy per task is often a better measurement

29

Dynamic Energy and Power

• Dynamic energy

=
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑣𝑒 𝐿𝑜𝑎𝑑 × 𝑉𝑜𝑙𝑡𝑎𝑔𝑒2

2

– Transistor switch from 0 1 or 1 0

• Dynamic power

=
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑣𝑒 𝐿𝑜𝑎𝑑 × 𝑉𝑜𝑙𝑡𝑎𝑔𝑒2 × 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑑

2

• Reducing clock rate reduces power, not energy

30

Copyright 2000 N. AYDIN. All rights

reserved. 6

Power

• Intel 80386
consumed ~ 2 W

• 3.3 GHz Intel Core
i7 consumes 130 W

• Heat must be
dissipated from 1.5
x 1.5 cm chip

• This is the limit of
what can be cooled
by air

31

Reducing Power

• Techniques for reducing power:

– Do nothing well

– Dynamic Voltage-Frequency Scaling

– Low power state for DRAM, disks

– Overclocking, turning off cores

32

Static Power

• Static power consumption
= 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑡𝑎𝑡𝑖𝑐× 𝑉𝑜𝑙𝑡𝑎𝑔𝑒

– 25-50% of total power

– Scales with number of transistors

• To reduce:

– power gating

33

Trends in Cost

• Cost driven down by learning curve

– Yield

• DRAM:

– price closely tracks cost

• Microprocessors:

– price depends on volume

• 10% less for each doubling of volume

34

Integrated Circuit Cost

• Integrated circuit

• Bose-Einstein formula:

• Defects per unit area = 0.016-0.057 defects per square cm (2010)

• N = process-complexity factor = 11.5-15.5 (40 nm, 2010)

35

Dependability

• Module reliability

– Mean time to failure (MTTF)

– Mean time to repair (MTTR)

– Mean time between failures (MTBF) = MTTF + MTTR

– Availability = MTTF / MTBF

36

Copyright 2000 N. AYDIN. All rights

reserved. 7

Measuring Performance

• Typical performance metrics:

– Response time

– Throughput

• Speedup of X relative to Y

– Execution timeY / Execution timeX

• Execution time

– Wall clock time: includes all system overheads

– CPU time: only computation time

• Benchmarks

– Kernels (e.g. matrix multiply)

– Toy programs (e.g. sorting)

– Synthetic benchmarks (e.g. Dhrystone)

– Benchmark suites (e.g. SPEC06fp, TPC-C)

37

Basic Performance Metrics

• Latency, delay, time

– Lower is better

• Complete a task as soon as possible

– Measured in sec, s, ns

• Throughput (bandwith)

– Higher is better

• Complete as many tasks per time as possible

– Measured in bytes/sec, instructions/sec

• Cost

– Lower is better

• Complete tasks for as little money as possible

– Measured in $, TL, etc.

38

Basic Performance Metrics

• Power

– Lower is better

• Complete tasks while dissipating as few joules/sec as possible

• Energy

– Lower is better

• Complete tasks using as few joules as possible

– Measured in Joules, Joules/instruction

• Reliability

– Higher is better

• Complete tasks with low probability of failure

– Measured in Mean time to failure (MTTF)

• MTTF: the average time until a failure occurs

39

Bandwidth and Latency

• Bandwidth or throughput

– Total work done in a given time
• 32,000-40,000X improvement for processors

• 300-1200X improvement for memory and disks

• Latency or response time

– Time between start and completion of an event
• 50-90X improvement for processors

• 6-8X improvement for memory and disks

40

Latency vs Throughput

• Madrid to Istanbul is about 3600 km

• Time:
– Aircraft 1 is faster than Aircraft 2

• 900/750 = 1.2 times or 20% faster

• Throughput:
– Aircraft 2 has a higher throughput

• (750*600)/(900*400) = 1.25 times the throughput or 25% more
throughput

41

Response Time vs Throughput

• Response time (latency)

– the time between the start and the completion of a task

• Important to individual users (passengers)

• Throughput (bandwidth)

– the total amount of work done in a given time

• Important to data center managers (airline)

• Different performance metrics are required

– to benchmark embedded and desktop computers,

• which are more focused on response time,

– to benchmark servers,

• which are more focused on throughput

42

Copyright 2000 N. AYDIN. All rights

reserved. 8

Principles of Computer Design

• Take Advantage of Parallelism

– e.g. multiple processors, disks, memory banks, pipelining,
multiple functional units

• Principle of Locality

– Reuse of data and instructions

• Focus on the Common Case

– Amdahl’s Law

43

Principles of Computer Design

• The Processor Performance Equation

44

Principles of Computer Design

• Different instruction types having different

CPIs

45

What is Performance?

• Purchasing perspective

– given a collection of machines, which has the

• best performance ?

• least cost ?

• best performance / cost ?

• Design perspective

– faced with design options, which has the

• best performance improvement ?

• least cost ?

• best performance / cost ?

• Both require

– basis for comparison

– metric for evaluation

• Our goal is to understand cost & performance implications of architectural

choices

46

Measurement and Evaluation

Architecture is an iterative process
-- searching the space of possible designs
-- at all levels of computer systems

Good Ideas
Mediocre Ideas

Bad Ideas

Cost /
Performance
Analysis

Design

Analysis

Creativity

47

Levels of Representation

High Level Language

Program

Assembly Language

Program

Machine Language

Program

Control Signal

Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110

1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

°

°

ALUOP[0:3] <= InstReg[9:11] & MASK

48

Copyright 2000 N. AYDIN. All rights

reserved. 9

Metrics of Performance

Compiler

Programming

Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

(millions) of Instructions per second: MIPS

(millions) of (FP) operations per second: MFLOP/s

Cycles per second (clock rate)

Megabytes per second

Answers per month

Operations per second

Each metric has a place and a purpose, and each can be misused

49

Basis of Evaluation

Actual Target Workload

Full Application Benchmarks

Small “Kernel”

Benchmarks

Microbenchmarks

Pros Cons

• representative

• very specific

• non-portable

• difficult to run/measure

• hard to identify cause

• portable

• widely used

• improvements

useful in reality

• easy to run, early

in design cycle

• identify peak

capability and

potential bottlenecks

• less representative

• easy to “fool”

• “peak” may be a long

way from application

performance

50

Measurement Tools

• Benchmarks, Traces, Mixes

• Hardware:

– Cost, delay, area, power estimation

• Simulation (many levels)

– ISA, RT, Gate, Circuit

• Queuing Theory

• Rules of Thumb

• Fundamental “Laws”/Principles

51

Which has Higher Performance?

• Time to run the task (Execution Time)

– Execution time, response time, latency

• Tasks per day, hour, week, sec, ns … (Performance)

– Throughput, bandwidth

Plane

Boeing 747

Concorde

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

52

Performance Definition

• Performance is in units of things per sec (bigger is
better)

• If we are primarily concerned with response time

" X is n times faster than Y" means

• Speed of Concorde vs. Boeing 747

• Throughput of Boeing 747 vs. Concorde

(X) timeExecution_

1
 (X) ePerformanc

(X) timeExecution_

(Y) timeExecution_

(Y) ePerformanc

(X) ePerformanc
 n

53

Performance: Example

• Time of Concorde vs. Boeing 747?

• Concorde is 1350 mph / 610 mph = 2.2 times faster

= 6.5 hours / 3 hours

• Throughput of Concorde vs. Boeing 747 ?

• Concorde is 178,200 pmph / 286,700 pmph = 0.62 “times faster”

• Boeing is 286,700 pmph / 178,200 pmph = 1.6 “times faster”

• Boeing is 1.6 times (“60%”) faster in terms of throughput

• Concorde is 2.2 times (“120%”) faster in terms of flying time

• We will focus primarily on execution time for a single
job

54

Copyright 2000 N. AYDIN. All rights

reserved. 10

Amdahl’s Law

• The performance gain that can be obtained by

improving some portion of a computer can be

calculated using Amdahl’s Law.

• Amdahl’s Law states that the performance

improvement to be gained from using some

faster mode of execution is limited by the

fraction of the time the faster mode can be

used.

• Amdahl’s Law defines the speedup that can be

gained by using a particular feature.

55

Amdahl’s Law

• What is speedup?

• Suppose that we can make an enhancement to a

computer that will improve performance when

it is used.

• Speedup is the ratio

• Alternatively

56

Amdahl's Law

Speedup due to enhancement E:

Suppose that enhancement E accelerates a fraction F of

the task by a factor S, and the remainder of the task is

unaffected

ExTime(w/E) = (1-F) x ExTime(w/o E) + F/S x ExTime(w/E)

E w/oePerformanc

E w/ ePerformanc

E w/ ExTime

E w/oExTime
 (E) Speedup

57

Amdahl’s Law

58

ExTimenew = ExTimeold x (1 - Fractionenhanced) +
Fractionenhanced

Speedupenhanced

Speedupoverall =

ExTimeold

ExTimenew

=
1

(1 - Fractionenhanced) +
Fractionenhanced

Speedupenhanced

Amdahl’s Law: Example 1

Suppose that Floating point instructions are

improved to run 2X; but only 10% of actual

instructions are FP. What’s the overall speedup

gained?

Speedupoverall=

ExTimenew =

F = 0.1 S = 2

59

Amdahl’s Law: Example 1

Suppose that Floating point instructions are

improved to run 2X; but only 10% of actual

instructions are FP. What’s the overall speedup

gained?

Speedupoverall=
1

0.95
= 1.053

ExTimenew = ExTimeold x (0.9 + 0.1/2) = 0.95 x ExTimeold

F = 0.1 S = 2

60

Copyright 2000 N. AYDIN. All rights

reserved. 11

Amdahl’s Law: Example 2

Suppose that we are considering an enhancement to the processor of a

server system used for web serving. The new CPU is 10 times faster on

computation in web serving application than the original processor.

Assuming that the original CPU is busy with computation 40% of the

time and is waiting for I/0 60% of time. What’s the overall speedup

gained by incorporating the enhancement?

F = 0.4 S = 10

Speedup(E) = 1/((1-0.4) + 0.4/10)

= 1.56

61

Amdahl’s law: Example 2

Suppose we want to design a processor for graphic applications.

Suppose that FP square root (FPSQR) computation is responsible

for 20% of execution time and all FP instructions are responsible

for 50% of execution time.

– Alternative 1: Enhance FPSQR hardware by a factor of
10.

Speedup(FPSQR) = 1/((1-0.2)+ 0.2/10) = 1.22

– Alternative 2: Enhance the speedup of all FP operations by
a factor of 1.6.

Speedup(FP) = 1/((1-0.5) + 0.5/1.6) = 1.28

Improving the performance of the FP operations overall

is slightly better because of the higher frequency!

62

CPU Equation

inst count

CPI

Cycle time

Inst. Count CPI Clock Rate

Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

Cycle

Seconds #
 x

nInstructio

Cycles #
 x

Program

nsInstructio #

Program

Seconds#
 time CPU

63

CPI: Cycles Per Instruction

• Instruction Frequency Fj

CPI = (CPU Time * Clock Rate) / Instruction Count

= Cycles / Instruction Count

• Average Cycles per Instruction

j

n

1j

j I CPI Time Cycle time CPU

Count nInstructio

I
 F whereF CPI CPI

j

j

n

j

jj
1

64

CPU Equation: Example 1

Typical Mix

Reg-Reg Architecture

Op Freq Cycles CPI(i) % Time

ALU 50% 1 0.5 23%

Load 20% 5 1.0 45%

Store 10% 3 0.3 14%

Branch 20% 2 0.4 18%

2.2

• How much faster would the machine be if a better data cache
reduced the average load time to 2 cycles?

• How does this compare with using branch prediction to save a
cycle off the branch time?

• What if two ALU instructions could be executed at once?

65

CPU Equation: Example 2

• Suppose we have the following measurements:

– Frequency of FP operations (others than FPSQR) = 25%

– Average CPI of FP operations = 4

– Average CPI of others instructions = 1.33

– Frequency of FPSQR = 2%

– CPI of FPSQR = 20

• Assume:
– Alternative 1: decrease the CPI of FPSQR to 2

– Alternative 2: decrease the average CPI of all operations to 2.5

Compare the two design alternatives using CPU

performance equation.

66

Copyright 2000 N. AYDIN. All rights

reserved. 12

CPU Equation: Example 2 (cont’d)

• CPI_original = 75% * 1.33 + 25% * 4 = 2

• CPI_newFPSQR = CPI_original – 2%*(CPI_oldFPSQR –

CPI_newFPSQR)

= 2 – 0.02*(20 – 2) = 1.64

• CPI_newFP = 75% * 1.33 + 25% * 2.5 = 1.625

• Speedup_newFP = CPU time original/CPU time new FP

= CPU_original / CPI_newFP

= 2.00/1.625 = 1.23

• Speedup_newFPSQR = 2.00 / 1.64 = 1.22

67

CPU Equation: Example 3

• Assume CPI = 1.0 ignoring branches (ideal)

• Assume branch solution was delaying for 3 cycles

• If 30% branch, delay 3 cycles on 30%

Op Freq Cycles CPI(i) (% Time)

Other 70% 1 0.7 (37%)

Branch 30% 4 1.2 (63%)

 new CPI = 1.9

New machine is 1/1.9 = 0.52 times faster (i.e. slow!)

68

SPEC: System Performance Evaluation

Cooperative

• First Round 1989
– 10 programs yielding a single number (“SPECmarks”)

• Second Round 1992
– SPECInt92 (6 integer programs) and SPECfp92 (14 floating point programs)

• Compiler Flags unlimited. March 93 of DEC 4000 Model 610:

spice: unix.c:/def=(sysv,has_bcopy,”bcopy(a,b,c)=

memcpy(b,a,c)”

wave5: /ali=(all,dcom=nat)/ag=a/ur=4/ur=200

nasa7: /norecu/ag=a/ur=4/ur2=200/lc=blas

• Third Round 1995
– new set of programs: SPECint95 (8 integer programs) and SPECfp95 (10 floating

point)

– “benchmarks useful for 3 years”

– Single flag setting for all programs: SPECint_base95, SPECfp_base95

69

SPEC First Round

• One program: 99% of time in single line of code

• New front-end compiler could improve dramatically

Be nchmark

S
P

E
C

 P
e

rf

0

100

200

300

400

500

600

700

800

g
c
c

e
p

re
ss

o

s
p
ic

e

d
o

d
u

c

n
a

s
a
7 li

e
q

n
to

tt

m
a

tr
ix

3
0
0

fp
p

p
p

to
m

c
a
tv

70

More Performance Metrics

• Arithmetic mean (weighted arithmetic mean) tracks

execution time: (Ti)/n or (Wi*Ti)

• Harmonic mean (weighted harmonic mean) of rates

(e.g., MFLOPS) tracks execution time:

n/(1/Ri) or n/(Wi/Ri)

• Normalized execution time is handy for scaling

performance (e.g., X times faster than SPARCstation

10)

• But do not take the arithmetic mean of normalized

execution time, use the geometric mean ((Ri)^1/n)

71

Impact of Means on

SPECmark89 for IBM 550

Ratio to VAX Time Weighted Time

Program Before After Before After Before After

gcc 30 29 49 51 8.91 9.22

espresso35 34 65 67 7.64 7.86

spice 47 47 510 510 5.69 5.69

doduc 46 49 41 38 5.81 5.45

nasa7 78 144 258 140 3.43 1.86

li 34 34 183 183 7.86 7.86

eqntott 40 40 28 28 6.68 6.68

matrix300 78 730 58 6 3.43 0.37

fpppp 90 87 34 35 2.97 3.07

tomcatv 33 138 20 19 2.01 1.94

Mean 54 72 124 108 54.42 49.99

Geometric Arithmetic Weighted Arith.

Ratio 1.33 Ratio 1.16 Ratio 1.09

72

Copyright 2000 N. AYDIN. All rights

reserved. 13

SPEC Performance: Summary

• “For better or worse, benchmarks shape a field”

• Good products created when have:
– Good benchmarks

– Good ways to summarize performance

• Given sales is a function in part of performance relative to

competition, investment in improving product as reported by

performance summary

• If benchmarks/summary inadequate, then choose between

improving product for real programs vs. improving product to get

more sales;

Sales almost always wins!

• Execution time is the measure of computer performance!

73

• Design-time metrics:
• Can it be implemented, in how long, at what cost?

• Can it be programmed? Ease of compilation?

• Static metrics:
• How many bytes does the program occupy in memory?

• Dynamic metrics:
• How many instructions are executed?

• How many bytes does the processor fetch to execute the program?

• How many clocks are required per instruction?

• How "lean" a clock is practical?

• Best Metric: Time to execute the program!

• Depends on instructions set, processor organization, and compiler

CPI

Inst. Count Cycle Time

Performance Metrics: Summary

74

Fallacies and Pitfalls

• All exponential laws must come to an end

– Dennard scaling (constant power density)

• Stopped by threshold voltage

– Disk capacity

• 30-100% per year to 5% per year

– Moore’s Law

• Most visible with DRAM capacity

• ITRS disbanded

• Only four foundries left producing state-of-the-art logic

chips

• 11 nm, 3 nm might be the limit

75

Fallacies and Pitfalls

• Microprocessors are a silver bullet

– Performance is now a programmer’s burden

• Falling prey to Amdahl’s Law

• A single point of failure

• Hardware enhancements that increase

performance also improve energy efficiency, or

are at worst energy neutral

• Benchmarks remain valid indefinitely

– Compiler optimizations target benchmarks

76

Fallacies and Pitfalls

• The rated mean time to failure of disks is

1,200,000 hours or almost 140 years, so disks

practically never fail

– MTTF value from manufacturers assume regular

replacement

• Peak performance tracks observed performance

• Fault detection can lower availability

– Not all operations are needed for correct execution

77

A Relative Performance Example

• If computer A runs a program in 10 seconds and

computer B runs the same program in 15 seconds,

– Which computer is faster?

– How much faster?

• We know that A is n times faster than B if
performance of A execution_time of B

--------------------- = -------------------------- = n

performance of B execution_time of A

• The performance ratio n is 15/10 =1.5

• So A is 1.5 times (50%) faster than B

78

Copyright 2000 N. AYDIN. All rights

reserved. 14

Ratios of Measure: Side Note

• For bigger-is-better metrics,

– improved means increase

• Vnew = 2.5 * Vold

– A metric increased by 2.5 times (sometimes written 2.5x)

– A metric increased by 150% (x% increase == 0.01*x+1 times

increase)

• For smaller-is-better metrics,

– improved means decrease

• e.g., Latency improved by 2x, means latency decreased

by 2x (i.e., dropped by 50%)

• e.g., Battery life worsened by 50%, means battery life

decrease by 50%.

79

Examples

• Bigger-is-better examples

– Bandwidth per dollar (e.g., in networking (GB/s)/$)

– BW/Watt (e.g., in memory systems (GB/s)/W)

– Work/Joule (e.g., instructions/joule)

– In general

• Multiply by big-is-better metrics, divide by smaller-is-better
metrics

• Smaller-is-better examples

– Cycles/Instruction (i.e., Time per work)

– Latency * Energy -- Energy Delay Product

– In general:

• Multiply by smaller-is-better metrics, divide by bigger-is-
better metrics

80

Clock Cycle and Clock Rate

• A clock cycle is a single electronic pulse of a CPU

– To synchronize different parts of the circuit

– To determine when events take place in the hardware

– Processor runs at a constant clock rate

– Clock cycle or tick or cycle = Discrete time interval

• Clock rate (frequency)

– Number of clock cycles per second in hertz

• 1 nsec (10-9) clock cycle => 1 GHz (109) clock rate

• 0.5 nsec clock cycle => 2 GHz clock rate

81

CPU Time (Execution Time)

• A program takes 15x1010 cycles to execute on a
computer with a clock cycle time of 500 picosec.

– How many seconds does it take for the program to execute?

CPU Time =Clock Cycles×Clock Cycle Time

=
Clock Cycles

Clock Rate

• Clock Cycles:

– How many cycles it takes for a program to execute!

• CPU Time (Execution time):

– How many seconds it takes for a program to execute!

82

CPU Time Example

• Computer A has a 2 GHz clock rate, executes a

program in 10 sec (CPU time)

• Designing Computer B by aiming for 6 sec CPU

time

– With a faster clock, but this causes 1.2 × clock cycles

• What is Computer B’s clock rate?

Clock RateB =
Clock CyclesB
CPU TimeB

=
1.2 × Clock CyclesA

6s
Clock CyclesA = CPU TimeA × Clock RateA = 10s × 2GHz = 20 × 10 9

Clock RateB =
1.2 × 20 × 10 9

6s
=
24 × 10 9

6s
= 4GHz

83

Comparing Computers

• Computers A and B implement the same ISA.

– Computer A has a clock cycle time of 250 ps and

an effective CPI of 2.0 for some program C

– Computer B has a clock cycle time of 500 ps and an

effective CPI of 1.2 for the same program.

• Which computer is faster and by how much?

Clock Cycles = Instruction Count×Cycles per Instruction

CPU Time = Instruction Count×CPI×Clock Cycles Time

=
Instruction Count×CPI

Clock Rate

84

Copyright 2000 N. AYDIN. All rights

reserved. 15

Comparing Computers

Clock Cycles = Instruction Count×Cycles per Instruction

CPU Time = Instruction Count×CPI×Clock Cycle Time

• Each computer executes the same number of
instructions, I, so

CPU timeA = I × 2.0 × 250 ps = 500 × Ips

CPU timeB = I × 1.2 × 500 ps = 600 × Ips

• Clearly, A is faster than B by the ratio of execution
times

performanceA execution_timeB 600 x Ips

------------------- = --------------------- = ---------------- = 1.2

performanceB execution_timeA 500 x Ips

85

