
Copyright 2000 N. AYDIN. All rights

reserved. 1

Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

1

The Von Neumann Model/Architecture

• Also called stored program computer
(instructions in memory).

• Two key properties:

– Stored program

• Instructions stored in a linear memory array

• Memory is unified between instructions and data
– The interpretation of a stored value depends on the control

signals

• When is a value interpreted as an instruction?

– Sequential instruction processing

• One instruction processed (fetched, executed, and
completed) at a time

2

3

A computing System (Reminder)

• What is a computer?

– in terms of what?

• Functional

• Structural

Functional definition
– Data processing

– Data storage

– Data movement

– Control

Structural definition
– Central processing unit

– Main memory

– Input/Output

– System interconnection

4

Computer

Structure - Top Level

Computer

Peripherals

Communication

lines

Main

Memory

Input

Output

Systems

Interconnection

Central

Processing

Unit

5

CPU

Structure - The CPU

Computer

CPU

I/O

Memory

System

Bus

Arithmetic

and

Logic Unit

Control

Unit

Internal CPU

Interconnection

Registers

6

Control Unit

Structure - The Control Unit

Control

Memory

Control Unit

Registers and

Decoders

Sequencing

Logic

CPU

Control

Unit

ALU

Registers

Internal

Bus

mailto:naydin@yildiz.edu.tr

Copyright 2000 N. AYDIN. All rights

reserved. 2

7

The Stored Program Computer

•1943: ENIAC

– Presper Eckert and John Mauchly -- first general electronic computer.

(or was it John V. Atanasoff in 1939?)

– Hard-wired program -- settings of dials and switches.

•1944: Beginnings of EDVAC

– among other improvements, includes program stored in memory

•1945: John von Neumann

– wrote a report on the stored program concept,

known as the First Draft of a Report on EDVAC

•The basic structure proposed in the draft became known

as the “von Neumann machine” (or model).

– a memory, containing instructions and data

– a processing unit, for performing arithmetic and logical operations

– a control unit, for interpreting instructions

8

Von Neumann Model

9

ENIAC - details

• Decimal (not binary)

• 20 accumulators of 10
digits

• Programmed manually
by switches

• 18,000 vacuum tubes

• 30 tons

• 15,000 square feet

• 140 kW power
consumption

• 5,000 additions per
second

http://www.seas.upenn.edu/~museum/

10

Interface to Memory

• How does processing unit get data to/from memory?

• MAR: Memory Address Register

• MBR (MDR): Memory Buffer (Data) Register

To LOAD a memory location (A):

1. Write the address (A) into the MAR.

2. Send a “read” signal to the memory.

3. Read the data from MBR.

To STORE a value (X) to a location (A):

1. Write the data (X) to the MBR.

2. Write the address (A) into the MAR.

3. Send a “write” signal to the memory.

11

Processing Unit

•Functional Units (Execution unit)

– ALU = Arithmetic and Logic Unit

– could have many functional units.

some of them special-purpose

(multiply, square root, …)

•Registers

– Small, temporary storage

– Operands and results of functional units

•Word Size

– number of bits normally processed by ALU in one instruction

– also width of registers

12

Input and Output

•Devices for getting data into and
out of computer memory

•Each device has its own interface,
usually a set of registers (I/OAR and
I/OBR)

•Some devices provide both input
and output

– disk, network

•Program that controls access to a
device is usually called a driver.

Copyright 2000 N. AYDIN. All rights

reserved. 3

13

Control Unit

•Orchestrates execution of the program

•Instruction Register (IR) contains the current

instruction.

•Program Counter (PC) contains the address of

the next instruction to be executed.

•Control unit:

– reads an instruction from memory

• the instruction’s address is in the PC

– interprets the instruction, generating

signals that tell the other components

what to do

• an instruction may take many

machine cycles to complete

14

Program Concept

• Hardwired systems

are inflexible

• General purpose

hardware can do

different tasks, given

correct control

signals

• Instead of re-wiring,

supply a new set of

control signals

15

What is a program?

• A sequence of steps

• For each step, an arithmetic or logical

operation is done

• For each operation, a different set of control

signals is needed

16

Instruction Processing

Decode instruction

Evaluate Address

fetch OPerands from memory

EXecute operation

Store result

Fetch instruction from memory

17

Instruction

•The instruction is the fundamental unit of work.

•Specifies two things:

– opcode: operation to be performed

– operands: data/locations to be used for operation

•An instruction is encoded as a sequence of bits.

(Just like data!)

– Often, but not always, instructions have a fixed length,

such as 16 or 32 bits.

– Control unit interprets instruction:

generates sequence of control signals to carry out operation.

– Operation is either executed completely, or not at all.

•A computer’s instructions and their formats is known as its

Instruction Set Architecture (ISA).

18

Instruction Processing: FETCH

•Load next instruction (at address stored in PC)

from memory

into Instruction Register (IR).

– Copy contents of PC into MAR.

– Send “read” signal to memory.

– Copy contents of MBR into IR.

•Then increment PC, so that it points to

the next instruction in sequence.

– PC becomes PC+1.

EA

OP

EX

S

F

D

Copyright 2000 N. AYDIN. All rights

reserved. 4

19

Instruction Processing: DECODE

•First identify the opcode.

– A n-to-2n decoder asserts a control line

corresponding to the desired opcode.

•Depending on opcode, identify other operands

from the remaining bits.

EA

OP

EX

S

F

D

20

Instruction Processing: EVALUATE ADDRESS

•For instructions that require memory access,

compute address used for access.

•Examples:

– add offset to base register

– add offset to PC

– add offset to zero

EA

OP

EX

S

F

D

21

Instruction Processing: FETCH OPERANDS

•Obtain source operands needed to

perform operation.

•Examples:

– load data from memory (LDA)

– read data from register file (ADD)

EA

OP

EX

S

F

D

22

Instruction Processing: EXECUTE

•Perform the operation,

using the source operands.

•Examples:

– send operands to ALU and assert ADD signal

– do nothing (e.g., for loads and stores)

EA

OP

EX

S

F

D

23

Instruction Processing: STORE RESULT

•Write results to destination.

(register or memory)

•Examples:

– result of ADD is placed in destination register

– result of memory load is placed in destination

register

– for store instruction, data is stored to memory

• write address to MAR, data to MBR

• assert WRITE signal to memory

EA

OP

EX

S

F

D

24

Changing the Sequence of Instructions

•In the FETCH phase, we increment the Program Counter by 1.

•What if we don’t want to always execute the instruction that
follows this one?

– examples: loop, if-then, function call

•Need special instructions that change the contents of the PC.

•These are called control instructions.

– jumps are unconditional -- they always change the PC

– branches are conditional -- they change the PC only if
some condition is true (e.g., the result of an ADD is zero)

Copyright 2000 N. AYDIN. All rights

reserved. 5

25

Instruction Processing Summary

•Instructions look just like data -- it’s all interpretation.

•Four basic kinds of instructions:

– Data processing instructions

• Arithmetic and logic instructions (ADD, AND, …)

– Data storage instructions

• Memory instructions (LDA, STA)

– Data movement instructions

• I/O instructions (IN, OUT, …)

– Program flow control instructions

• Test and branch instructions (JMP, BRP, …)

•Six basic phases of instruction processing:

F D EA OP EX S

– not all phases are needed by every instruction

– phases may take variable number of machine cycles

26

Control Unit State Diagram

•The control unit is a state machine.

•Here is part of a simplified state diagram:

27

Stopping the Clock

•Control unit will repeat instruction processing sequence

as long as clock is running.

– If not processing instructions from your application,

then it is processing instructions from the Operating System (OS).

– The OS is a special program that manages processor

and other resources.

•To stop the computer:

– AND the clock generator signal with ZERO

– When control unit stops seeing the CLOCK signal, it stops

processing.

Dataflow Model of a Computer

Von Neumann model

• An instruction is

fetched and

executed in

control flow order

– As specified by

the instruction

pointer

– Sequential unless

explicit control

flow instructio

Dataflow model

• An instruction is fetched and executed
in data flow order

– i.e., when its operands are ready

– i.e., there is no instruction pointer

– Instruction ordering specified by data
flow dependence

• Each instruction specifies “who” should
receive the result

• An instruction can “fire” whenever all
operands are received

– Potentially many instructions can
execute at the same time

– Inherently more parallel

28

von Neumann vs Dataflow

• Consider a von Neumann program (sequential) vs dataflow
execution

• Which model is more natural to you as a programmer?

• All major instruction set architectures today use von Neumann
– x86, ARM, MIPS, SPARC, Alpha, POWER PC

29 30

Fundamental Computer Elements

Copyright 2000 N. AYDIN. All rights

reserved. 6

Fundamental computer elements

• Data processing
– Provided by gates

• Data storage
– Provided by memory cells

• Data movement
– The paths between components are used to move data from/to memory

• Control
– The paths between components can carry control signals

31 32

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110

1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

ALUOP[0:3] <= InstReg[9:11] & MASK

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signal
Specification

Compiler

Assembler

Machine Interpretation

°

°

Levels of Representation

33

Computer Components-CPU

34

CPU Structure

• CPU must:

– Fetch instructions

– Interpret instructions

– Fetch data

– Process data

– Write data

35

Registers

• CPU must have some

working space (temporary

storage)

– Called registers

• Number and function vary between processor

designs

• One of the major design decisions

• Top level of memory hierarchy

36

Registers in the P perform two roles:

• User-visible registers

– Enable the machine- or assembly language

programmer to minimize main memory references

by optimizing use of registers

• Control and status registers

– Used by the control unit to control the operation of

the processor and by priviliged, operating system

programs to control the execution of programs

Copyright 2000 N. AYDIN. All rights

reserved. 7

37

User Visible Registers

• General Purpose registers

• Data registers

• Address registers

• Condition Codes (flags)

38

Condition Code Registers

• Sets of individual bits

– e.g. result of last operation was zero

• Can be read (implicitly) by programs

– e.g. Jump if zero

• Can not (usually) be set by programs

39

Control & Status Registers

• Program Counter (PC)

– Contains the address of an instruction to be fetched

• Instruction Decoding Register (IR)

– Contains the instruction most recently fetched

• Memory Address Register (MAR)

– Contains the addres of location in memory

• Memory Buffer Register (MBR)

– Contains a word or data to be written to memory or the

word most recently read

40

Program Status Word
• A set of bits containing status information

• Includes Condition Codes (flags)

– Sign

• sign of last result

– Zero

• set when the result is 0

– Carry

• set if an operation resulted in a carry (addition) into or borrow
(subtraction) out of a high order bit

– Equal

• set if a logical compare result is equality

– Overflow

• used to indicate arithmetic overflow

– Interrupt enable/disable

• used to enable or disable interrupts

41

Example Register Organizations

42

Computer Components-Memory

Copyright 2000 N. AYDIN. All rights

reserved. 8

43

Operation of Memory

• Each memory location has a unique address

• Address from an instruction is copied to the MAR

which finds the location in memory

• CPU determines if it is a store or retrieval

• Transfer takes place between the MBR and memory

– MBR is a two way register

44

Relationship between MAR, MBR and Memory

Address Data

45

MAR-MBR Example

46

Visual Analogy of Memory

47

Individual Memory Cell

48

Memory Capacity

• Determined by two factors

– Number of bits in the MAR

• 2K where K = width of the register in bits

– Size of the address portion of the instruction

• 4 bits allows 16 locations

• 8 bits allows 256 locations

• 32 bits allows 4,294,967,296 or 4 GB

• Important for performance

– Insufficient memory can cause a processor to work
at 50% below performance

Copyright 2000 N. AYDIN. All rights

reserved. 9

49

Memory Hierarchy

• Registers

– In CPU

• Internal or Main memory

– May include one or more levels of cache

– “RAM”

• External memory

– Backing store

50

• This storage organization can be thought of as a pyramid:

Memory Hierarchy

51

Cache

• Small amount of fast memory

• Sits between normal main memory and CPU

• May be located on CPU chip or module

52

• Cache memory enhances performance by providing

faster memory access speed.

• Virtual memory enhances performance by providing

greater memory capacity, without the expense of

adding main memory.

• Instead, a portion of a disk drive serves as an

extension of main memory.

• If a system uses paging, virtual memory partitions

main memory into individually managed page frames,

that are written (or paged) to disk when they are not

immediately needed.

Virtual Memory

53

RAM: Random Access Memory

• DRAM (Dynamic RAM)

– Most common, cheap

– Volatile: must be refreshed (recharged with power) 1000’s

of times each second

• SRAM (static RAM)

– Faster than DRAM and more expensive than DRAM

– Volatile

– Frequently small amount used in cache memory for high-

speed access used

54

Dynamic RAM Structure

Copyright 2000 N. AYDIN. All rights

reserved. 10

55

Stating RAM Structure

56

Read Only Memory (ROM)

• Permanent storage

– Nonvolatile

• Used in...

– Microprogramming

– Library subroutines

– Systems programs (BIOS)

– Function tables

57

Types of ROM

• Written during manufacture

– Very expensive for small runs

• Programmable (once)

– PROM

– Needs special equipment to program

• Read “mostly”

– Erasable Programmable (EPROM)

• Erased by UV

– Electrically Erasable (EEPROM)

• Takes much longer to write than read

– Flash memory

• Erase whole memory electrically

58

Types of External Memory

• SSD
– Fast

– Expensive (relatively)

• Magnetic Disk
– RAID

– Removable

• Optical
– CD-ROM

– CD-Recordable (CD-R)

– CD-R/W

– DVD

• Magnetic Tape

59

Computer Components-I/O

60

Input/Output Problems

• Wide variety of

peripherals

– Delivering different

amounts of data

– At different speeds

– In different formats

• All slower than CPU

and RAM

• Need I/O modules

Copyright 2000 N. AYDIN. All rights

reserved. 11

61

Input/Output Module

• Interface to CPU and

Memory

• Interface to one or more

peripherals

• I/O Module Function:

– Control & Timing

– CPU Communication

– Device Communication

– Data Buffering

– Error Detection

I/O Module Block Diagram

62

External Devices

• External Devices:

– Human readable

• Screen, printer,

keyboard

– Machine readable

• Monitoring and

control

– Communication

• Modem

• Network Interface

Card (NIC)

External Device Block Diagram

63

I/O Steps

• CPU checks I/O module device status

• I/O module returns status

• If ready, CPU requests data transfer

• I/O module gets data from device

• I/O module transfers data to CPU

• Variations for output, DMA, etc.

64

• I/O can be controlled in four general ways:

– Programmed I/O

• Reserves a register for each I/O device.

• Each register is continually polled to detect data arrival.

– Interrupt-Driven I/O

• Allows the CPU to do other things until I/O is requested.

– Direct Memory Access (DMA)

• Offloads I/O processing to a special-purpose chip that

takes care of the details.

– Channel I/O

• Uses dedicated I/O processors.

I/O Architectures

65

Computer Components- Bus

66

Bus

• The physical connection that makes it possible to
transfer data from one location in the computer system
to another

• Group of electrical conductors for carrying signals
from one location to another

• 4 kinds of signals

– Data
• Alphanumeric

• Numerical

• instructions

– Addresses

– Control signals

– Power (sometimes)

Copyright 2000 N. AYDIN. All rights

reserved. 12

67

Bus

• Connects CPU and Memory

• I/O peripherals: on the same bus as

CPU/memory or separate bus

• Physical packaging commonly called

backplane

– Also called system bus or external bus

– Example of broadcast bus (address bus)

– Part of printed circuit board called motherboard

that holds CPU and related components

68

Bus Characteristics

• Protocol

– Documented agreement for communication

– Specification that spells out the meaning of each

line and each signal on each line

• Throughput, i.e., data transfer rate in bits per

second

• Data width in bits carried simultaneously

69

Bus types

• Data Bus

– Carries data

– Width is a key determinant of performance

• 8, 16, 32, 64 bit

• Address bus

– Identify the source or destination of data

– Bus width determines maximum memory capacity of system

• e.g. 8080 has 16 bit address bus giving 64k address space

• Control Bus

– Control and timing information

• Memory read/write; I/O read/write; Transfer acknowledge; Bus request;

Bus grant; Interrupt request; Interrupt acknowledge; Clock; Reset

70

What do buses look like?

– Parallel lines on circuit

boards

– Ribbon cables

– Strip connectors on

mother boards

• e.g. PCI

– Sets of wires

Physical Realization of

Bus Architecture

71

Motherboard

• Printed circuit

board that holds

CPU and related

components

including

backplane

72

Copyright 2000 N. AYDIN. All rights

reserved. 13

73

Typical PC Interconnections

Bus interface bridges connect different bus types

74

Instructions

• Instruction:

– Direction given to a computer

– Causes electrical signals to be sent through specific circuits

for processing

• The operation of the processor is determined by the

instructions it executes,

– which is referrred as machine instructions or computer

instructions

• The collection of different instructions that the

processor execute is referred as the processor’s

instruction set.

75

What is an Instruction Set?

• The complete collection of instructions that are
understood by a CPU
– Machine Code

– Binary

• Usually represented by assembly codes

• Differentiates computer architecture by the
– Number of instructions

– Complexity of operations performed by individual
instructions

– Data types supported

– Format (layout, fixed vs. variable length)

– Use of registers

– Addressing (size, modes)

76

Instruction Elements

• Operation code (OPCODE): task

– Do this

• Source OPERAND reference(s)

– To this

• Result OPERAND reference

– Put the answer here

• Next Instruction Reference

– When you have done that, do this...

OPCODE
Source

OPERAND
Result

OPERAND

Addresses

77

• Source and Result Operands can be in one of

the following areas:

– Main memory

– Virtual memory

– Cache

– CPU register

– I/O device

Instruction Elements

78

Instruction Format

• Machine-specific template that specifies

– Length of the op code

– Number of operands

– Length of operands

Simple

32-bit

Instruction

Format

Copyright 2000 N. AYDIN. All rights

reserved. 14

79

Instruction Types

• Data Transfer (load, store)
– Most common, greatest flexibility

– Involve memory and registers

– What’s a word ? 16? 32? 64 bits?

• Arithmetic
– Operators + - / * ^

– Integers and floating point

• Logical or Boolean
– Relational operators: > < =

– Boolean operators AND, OR, XOR, NOR, and NOT

• Single operand manipulation instructions
– Negating, decrementing, incrementing

80

More Instruction Types

• Bit manipulation instructions

– Flags to test for conditions

• Shift and rotate

• Program control

• Stack instructions

• Multiple data instructions

• I/O and machine control

81

Register Shifts and Rotates

82

Program Control Instructions

• Program control

– Jump and branch

– Subroutine call

and return

83

Instruction Cycle

• Two steps:

– Fetch

– Execute

84

Fetch Cycle

• Program Counter (PC) holds address of next

instruction to fetch

• Processor fetches instruction from memory

location pointed to by PC

• Increment PC

– Unless told otherwise

• Instruction loaded into Instruction Register

(IR)

• Processor interprets instruction and performs

required actions

Copyright 2000 N. AYDIN. All rights

reserved. 15

85

Execute Cycle

• Processor-memory

– data transfer between CPU and main memory

• Processor I/O

– Data transfer between CPU and I/O module

• Data processing

– Some arithmetic or logical operation on data

• Control

– Alteration of sequence of operations

– e.g. jump

• Combination of above

86

A simple example – A hypotetical machine

87

A simple example –

• Next figure illustrates a partial program

execution.

• It adds the contents of the memory word at

address 940 to the contents of the memory

word at address 941 and stores the result in the

address 941.

• Here 3 instructions (3 fetch and 3 execute

cycles) are required

88

Example of Program Execution

89

A virtual processor for

understanding instruction cycle

The Visible Virtual Machine (VVM)

90

• This is a general
depiction of a
von Neumann
system:

• These
computers
employ a fetch-
decode-execute
cycle to run
programs as
follows . . .

The von Neumann Model

Copyright 2000 N. AYDIN. All rights

reserved. 16

91

• The control unit fetches the next instruction from
memory using the program counter to determine
where the instruction is located.

92

• The instruction is decoded into a language that the
ALU can understand.

93

• Any data operands required to execute the
instruction are fetched from memory and placed
into registers within the CPU.

94

• The ALU executes the instruction and places results
in registers or memory.

95

A virtual processor for understanding instruction cycle

96

The VVM Machine

• The Visible Virtual Machine (VVM) is based on a

model of a simple computer device called the Little

Man Computer which was originally developed by

Stuart Madnick in 1965, and revised in 1979.

• The VVM is a virtual machine because it only appears

to be a functioning hardware device.

• In reality, the VVM "hardware" is created through a

software simulation. One important simplifying

feature of this machine is that it works in decimal

rather than in the traditional binary number system.

• Also, the VVM works with only one form of data -

decimal integers.

Copyright 2000 N. AYDIN. All rights

reserved. 17

97

Hardware Components of VVM

• I/O Log. This represents the system console which shows
the details of relevant events in the execution of the
program. Examples of events are the program begins, the
program aborts, or input or output is generated.

• Accumulator Register (Accum). This register holds the
values used in arithmetic and logical computations. It also
serves as a buffer between input/output and memory.
Legitimate values are any integer between -999 and +999.
Values outside of this range will cause a fatal VVM
Machine error. Non integer values are converted to
integers before being loaded into the register.

• Instruction Cycle Display. This shows the number of
instructions that have been executed since the current
program execution began.

98

Hardware Components of VVM

• Instruction Register (Instr. Reg.). This register holds the next
instruction to be executed. The register is divided into two parts: a
one-digit operation code, and a two digit operand. The Assembly
Language mnemonic code for the operation code is displayed below
the register.

• Program Counter Register (Prog. Ctr.). The two-digit integer value
in this register "points" to the next instruction to be fetched from
RAM. Most instructions increment this register during the execute
phase of the instruction cycle. Legitimate values range from 00 to 99.
A value beyond this range causes a fatal VVM Machine error.

• RAM. The 100 data-word Random Access Storage is shown as a
matrix of ten rows and ten columns. The two-digit memory addresses
increase sequentially across the rows and run from 00 to 99. Each
storage location can hold a three-digit integer value between -999 and
+999.

99

Data and Addresses

• All data and address values are maintained as

decimal integers.

• The 100 data-word memory is addresses with

two-digit addressed in the range 00-99.

• Each memory location holds one data-word

which is a decimal integer in the range -999 -

+999.

• Data values beyond this range cause a data

overflow condition and trigger a VVM system

error.

100

VVM Program Editor

101

VVM Program Editor

102

VVM Structure and User Interface

Copyright 2000 N. AYDIN. All rights

reserved. 18

103

VVM System Errors

• Data value out of range. This condition occurs when a data value exceeds the
legitimate range -999 - +999. The condition will be detected while the data resides
in the Accumulator Register. Probable causes are an improper addition or
subtraction operation, or invalid user input.

• Undefined instruction. This occurs when the machine attempts to execute a
three-digit value in the Instruction Register which can not be interpreted as a valid
instruction code. See the help topic "VVM Language" for valid instruction codes
and their meaning. Probable causes of this error are attempting to use a data value
as an instruction, an improper Branch instruction, or failure to provide a Halt
instruction in your program.

• Program counter out of range. This occurs when the Program Counter Register
is incremented beyond the limit of 99. The likely cause is failure to include a Halt
instruction in your program, or a branch to a high memory address.

• User cancel. The user pressed the "Cancel" button during an Input or Output
operation.

104

The Language Instructions

• Load Accumulator (5nn) [LDA nn] The content of RAM address
nn is copied to the Accumulator Register, replacing the current
content of the register. The content of RAM address nn remains
unchanged. The Program Counter Register is incremented by one.

• Store Accumulator (3nn) [STO nn] or [STA nn] The content of
the Accumulator Register is copied to RAM address nn, replacing
the current content of the address. The content of the Accumulator
Register remains unchanged. The Program Counter Register is
incremented by one.

• Add (1nn) [ADD nn] The content of RAM address nn is added to
the content of the Accumulator Register, replacing the current
content of the register. The content of RAM address nn remains
unchanged. The Program Counter Register is incremented by one.

105

The Language Instructions

• Subtract (2nn) [SUB nn] The content of RAM address nn is subtracted from the
content of the Accumulator Register, replacing the current content of the register.
The content of RAM address nn remains unchanged. The Program Counter
Register is incremented by one.

• Input (901) [IN] or [INP] A value input by the user is stored in the Accumulator
Register, replacing the current content of the register. Note that the two-digit
operand does not represent an address in this instruction, but rather specifies the
particulars of the I/O operation (see Output). The operand value can be omitted in
the Assembly Language format. The Program Counter Register is incremented by
one with this instruction.

• Output (902) [OUT] or [PRN] The content of the Accumulator Register is
output to the user. The current content of the register remains unchanged. Note
that the two-digit operand does not represent an address in this instruction, but
rather specifies the particulars of the I/O operation (see Input). The operand value
can be omitted in the Assembly Language format. The Program Counter Register
is incremented by one with this instruction.

106

The Language Instructions

• Branch if Zero (7nn) [BRZ nn] This is a conditional branch instruction. If the
value in the Accumulator Register is zero, then the current value of the Program
Counter Register is replaced by the operand value nn (the result is that the next
instruction to be executed will be taken from address nn rather than from the next
sequential address). Otherwise (Accumulator >< 0), the Program Counter Register is
incremented by one (thus the next instruction to be executed will be taken from the
next sequential address).

• Branch if Positive or Zero (8nn) [BRP nn] This is a conditional branch
instruction. If the value in the Accumulator Register is nonnegative (i.e., >= 0), then
the current value of the Program Counter Register is replaced by the operand value
nn (the result is that the next instruction to be executed will be taken from address
nn rather than from the next sequential address). Otherwise (Accumulator < 0), the
Program Counter Register is incremented by one (thus the next instruction to be
executed will be taken from the next sequential address).

• Branch (6nn) [BR nn] or[BRU nn] or [JMP nn] This is an unconditional branch
instruction. The current value of the Program Counter Register is replaced by the
operand value nn. The result is that the next instruction to be executed will be taken
from address nn rather than from the next sequential address. The value of the
Program Counter Register is not incremented with this instruction.

107

The Language Instructions
• No Operation (4nn) [NOP] or [NUL] This instruction does nothing

other than increment the Program Counter Register by one. The
operand value nn is ignored in this instruction and can be omitted in
the Assembly Language format. (This instruction is unique to the
VVM and is not part of the Little Man Model.)

• Halt (0nn) [HLT] or [COB] Program execution is terminated. The
operand value nn is ignored in this instruction and can be omitted in
the Assembly Language format.

Embedding Data in Programs

• Data values used by a program can be loaded into memory along
with the program. In Machine or Assembly Language form simply
use the format "snnn" where s is an optional sign, and nnn is the
three-digit data value. In Assembly Language, you can specify
"DAT snnn" for clarity.

108

Assembly Language

• Specific to a CPU

• 1 to 1 correspondence between assembly
language instruction and binary (machine)
language instruction

• Mnemonics (short character sequence)
represent instructions

• Used when programmer needs precise control
over hardware, e.g., device drivers

Copyright 2000 N. AYDIN. All rights

reserved. 19

109

Example - Add 2 Numbers

• Assume data is stored

in mailbox address 90

• Let us write instructions

(using Mnemonics)

00 IN; input 1st Number

01 STO 90; store data in memory

location 90

02 IN; input 2nd Number

03 ADD 90; add 1st # to 2nd #

04 OUT; output result

05 COB; stop

90 DAT 00; data

Input a #

Store the #

Input a #

Add

Output the
number

110

Example - Add 2 Numbers (Using Machine code)

Mailbox Code Instruction Description

00 901 ;input 1st Number

01 390 ;store data in memory location 90

02 901 ;input 2nd Number

03 190 ;add 1st # to 2nd #

04 902 ;output result

05 000 ;stop

90 000 ;data

111

Program Control

• Branching (executing an instruction out of

sequence)

– Changes the address in the counter

• Halt
Content

Op Code Operand

(address)

BR (Jump) 6 xx

BRZ (Branch on 0) 7 xx

BRP (Branch on +) 8 xx

COB (stop) 0 (ignore)

112

Instruction Set

ADD 1xx ADD

SUB 2xx SUB

STA or STO 3xx STORE

LDA 5xx LOAD

BR or BRU or JMP 6xx JUMP

BRZ 7xx BRANC ON 0

BRP 8xx BRANCH ON +

IN or INP 901 INPUT

OUT or PRN 902 OUTPUT

NOP or NUL 400 No Operation

HLT or COB 000 HALT (coffee break)

113

Example - Find Positive Difference of 2 Numbers

00 IN 901 ;input 1st Number

01 STO 10 310 ;store data in memory location 10

02 IN 901 ;input 2nd Number

03 STO 11 311 ;store data in memory location 11

04 SUB 10 210 ;subtract 1st # from the 2nd #

05 BRP 08 808 ;test

06 LDA 10 510 ;if negative, reverse order

07 SUB 11 211 ;subtract 2nd # from the 1st #

08 OUT 902 ;print result and

09 HLT 000 ;stop

10 DAT 00 000 ;used for data

11 DAT 00 000 ;used for data

