BLM6112 Advanced Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

Course Details

- Course Code : BLM6112
- Course Name : Advanced Computer Architecture
- Credit : 3
 - Level : Graduate
- Schedule : Wednesday 09:00-11:50
- Course web page: http://www3.yildiz.edu.tr/~naydin/na_AcA.htm
- Instructors : Nizamettin AYDIN
 Room: D-128
 Email: naydin@yildiz.edu.tr, nizamettinaydin@gmail.com

2

-

COMPUTER

Course Objective

- Learning properties of various computer architectures
- Learning about design (hardware) issues of high performance computing.

Course Content

- Revisison of Some Fundamental Concepts
- Computer System, Computer Evolution and Performance
- Cache, Cache Optimization, Virtual Memory
- Pipeline, Instruction-Level Parallelism, Data-Level Parallelism
- GPU Architectures, Thread-Level Parallelism, Multicore Processors.

Course Prerequisite

- Basic knowledge in
 - -Computer organization
 - -Digital circuit design
 - -High-level language programming, e.g. C or Java
 - -Assembly programming, e.g. Intelx86 or MC680xx.

Recommended Text(s)

Main textbook:

 Computer Architecture: A Quantitative Approach, John L. Hennessy, David A. Patterson
 Other recommended texts

- Other recommended texts
 Computer Organization and
 Architecture: Designing for
 Performance, William Stallings
- Computer Organization and Design, David A. Patterson and John L. Hennessy
- Computer System Architecture, M. Morris Mano
- Logic and Computer Design Fundamentals, M. Morris Mano, Charles Kime

Course Outline

- Revision of Fundamental Concepts
- Fundamentals of Quantitative Design & Analysis (Chapter 1)
- Instruction Set Principals (Appendix A)
- Instruction Pipelining (Appendix C)
- Memory Hierarchy Design (Appendix B & Chapter 2)
- Instruction-Level Parallelism (Chapter 3)
- Data-Level Parallelism (Chapter 4)
- Thread-Level Parallelism (Chapter 5)

Assesment

Midterm : 30%
Final : 40%
Project : 15%
Homework : 15%

Rules of the Conduct

- No eating /drinking in class
 except water
- Cell phones must be kept outside of class or switched-off during class
- No talking with your peers
- No late arrival or early leave to/from the lecture
- No web surfing and/or unrelated use of computers
 - when computers are used in class or lab

Rules of the Conduct

- You are responsible for checking the class web page often for announcements.
 - http://www3.yildiz.edu.tr/~naydin/na_AcA.htm
- · Academic dishonesty and cheating
 - will not be tolerated
 - will be dealt with according to university rules and regulations
 - http://www.yok.gov.tr/content/view/475/
 - Presenting any work that does not belong to you is also considered academic dishonesty.

Electronics Systems

The Computer Revolution

- Progress in computer technology
 Underpinned by Moore's Law
- Makes novel applications feasible
 - Computers in automobiles
 - Cell phones
 - Human genome project
 - World Wide Web
 - Search Engines

11

• Computers are pervasive

10

12

The Processor Market

Cell Phones!!

Cell Phones!!

Classes of Computers

- Desktop computers
 - General purpose, variety of software
 - Subject to cost/performance tradeoff
- · Server computers
 - Network based
 - High capacity, performance, reliability
- Embedded computers
 - Hidden as components of systems
 - Stringent power/performance/cost constraints
- Supercomputers

15

17

Below Your Program

• Application software

- Written in high-level language

- System software
 - Compiler: translates HLL code to machine code
 - Operating System: service code
 - Handling input/output
 - · Managing memory and storage
 - Scheduling tasks & sharing resources

• Hardware

- Processor, memory, I/O controllers

Levels of Program Code

- High-level language
 - Level of abstraction closer to problem domainProvides for productivity and
- portabilityAssembly language
 - Textual representation of instructions
- · Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data

14

16

Below Your Program

- Same components for all kinds of computer
 - Desktop, server, embedded
- Input/output includes
 - User-interface devicesDisplay, keyboard, mouse
 - Storage devices
 Hard disk, CD/DVD, flash
 - Network adapters
 - For communicating with other computers

19

21

23

Networks

- · Communication and resource sharing
- Local area network (LAN): Ethernet – Within a building
- Wide area network (WAN: the Internet
- Wireless network: WiFi, Bluetooth

Networks

- Volatile main memory
- Loses instructions and data when power off
 Non-volatile secondary memory
- Magnetic disk
- Magnetic disk
 Flash memory
- Optical disk (CDROM, DVD)

Anatomy of a Computer

Opening the Box

The Processor

• AMD Barcelona: 4 processor cores

22

24

Copyright 2000 N. AYDIN. All rights reserved.

Inside the Computer

Inside the Processor (CPU)

Inside the Control Unit

Technology Trends

Electronics technology continues to evolve
 Increased capacity and performance
 Reduced cost

Year	Technology	Relative performance/cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit (IC)	900
1995	Very large scale IC (VLSI)	2,400,000
2005	Ultra large scale IC	6,200,000,000

29

Copyright 2000 N. AYDIN. All rights reserved.

28

31

33

35

32

3.4

Eniac (find the OS?)

Eniac (find the Programmer?)

Integrated Circuits: wafer (564 dies)

Then, slice into wafers and pattern it...

In the beginning Intel 4004 (4-bit)

Intel 8080 (8-bit)

Intel 8086 (16-bit)

Motorola 68000 (32-bit)

Pentium 4 (64-bit)

Pentium 4 chip breakdown

Technology Trends

	P	0000000	Droiu	mon	
	Year/Month	Clock =1/tc.	Transistors.	Micras	
	1971/11	108 KHz.	2300	10	
18080	1974/04	2 MHz	6000	6	
18086	1978/06	10 MHz	29000	3	
180286	1982/02	12 MHz	0.13 m.	1.50	
1486DX	1989/04	25 MHz	1.2 m.	1	
Intel DX2	1992/03	100 MHz	1.6 m	0.8	
Pentium	1993/03	60 MHz.	3.1 m	0.8	
Pentium Pro	1995/11	200 MHz.	5.5 m	0.35	
	1998/	450 MHz	7.5 m	0.25	
Pentium III	2000/01	1000 MHz.	28 m.	0.18	
	2000/09	1400 MHz	42 m	0.18	

Intel IA-64 / Itanium

Explicit Parallel Instruction Computer

- IA-64
- Implementations: Merced (2001), McKinley (2002), Montecite (2 core, 2006), Tukwila (4-core 2009), Poulson (Q4, 2009, 8core)
- Architecture is now called Itanium

Tukwila 4 core Itanium, 2009

Copyright 2000 N. AYDIN. All rights reserved.

Intel Dunnington 6-core

How further?

Supercomputers

- IBM cluster
- 6480 nodes with
 - Dual core Opteron 1.8 GHz
 2 * PowerXCell 8i 3.2 GHz (12.8 GFlops)

- Infiniband connection fabric (16 Gbit/s per link)
 FAT tree interconnect
- 100 Tbyte DRAM memory
- 216 I/O nodes
- 2.35 MW power
- MPI programming
- Size: 296 racks, **550 m²** *This is huge !!*

BlueGene/L IBM

- Based on ASIC with PowerPC 440, 700 Mhz, each 2.8 GFlops
- 105,496 nodes
- 3D Torus interconnect for p2p communication + Collective network

51

53

Complete system

52

5.1

Data Center (IBM)

2009: BlueGene/P

- 208M trans
- 850 MHz
- 16W
- 90nm

BlueGene/L Node board

16 cards with 2 ASICs each 8 GB 180 Gflop

BlueGene/P node card

BlueGene/P rack

Can we match the human brain ???

57

- Performance = 100 Billion (10^11) Neurons * 1000 (10^3) Connections/Neuron * 200 (2 * 10^2) Calculations Per Second Per Connection = 2 * 10^16 Calculations Per Second
- Memory = 100 Billion (10^11) Neurons * 1000 (10^3) Connections/Neuron * 10 bytes (information about connection strength and adress of output neuron, type of synapse) = 10^15 bytes = 1 PB = 1000 TB

How far off are we?

Blue brain research

- Software replica of a column of the neocortex
 - 85% of brains total mass
 required for language, learning, memory and complex thought
 - the essential first step to simulating the whole brain
- Next: include circuitry from other brain regions and eventually the whole brain.

Incredible Computer Ads!

RAM Card!

Gromem co. . The New 16K KAM card ... (circa 197

62

64

HD Monitor!

Mobile Phone!!

Mobile Phones!!

63

Mobile Phones!!

Copyright 2000 N. AYDIN. All rights reserved.

System-on-Chip (SOC)

System-on-Chip (SOC)

At The End

What you should have understood after taking BLM6112

71

At The End

Thank You and Good Luck!