An APPTS(47) on the point set {A,B,0,1,2,...,44} with a hole {0,1,2,A,B}, and with the property that the addition of any of the 10 triples from the hole will not generate a Pasch configuration. With the addition of blocks A12 and B02 it becomes a generically labelled APMMPTS(47). The point A is represented as 45 and B as 46. There are no blocks {2,x,x+4} with arithmetic mod 45. The {A,B}-cycles are (3,4,7,8,5,6)+6k, k=0,1,2,3,4,5,6. By adding the further triples AB1 and A01 to the APMMPTS(47), the design is converted to an APMMCT(47) with thrice repeated pair A1. missing pairs 0 1 0 2 0 45 0 46 1 2 1 45 1 46 2 45 2 46 45 46 number of missing pairs = 10 list of blocks 0 3 8 0 4 9 0 5 11 0 6 13 0 7 15 0 10 17 0 12 16 0 14 20 0 18 19 0 21 26 0 22 27 0 23 33 0 24 38 0 25 44 0 28 39 0 29 34 0 30 42 0 31 35 0 32 43 0 36 37 0 40 41 1 3 10 1 4 13 1 5 9 1 6 12 1 7 11 1 8 19 1 14 18 1 15 20 1 16 17 1 21 28 1 22 33 1 23 43 1 24 41 1 25 38 1 26 36 1 27 34 1 29 35 1 30 44 1 31 42 1 32 39 1 37 40 2 3 11 2 4 16 2 5 20 2 6 15 2 7 17 2 8 13 2 9 14 2 10 19 2 12 18 2 21 29 2 22 35 2 23 28 2 24 34 2 25 40 2 26 41 2 27 32 2 30 38 2 31 33 2 36 39 2 37 44 2 42 43 3 4 45 3 5 18 3 6 46 3 7 21 3 9 23 3 12 25 3 13 27 3 14 31 3 15 36 3 16 41 3 17 37 3 19 29 3 20 39 3 22 43 3 24 30 3 26 33 3 28 35 3 32 34 3 38 40 3 42 44 4 5 22 4 6 36 4 7 46 4 8 41 4 10 38 4 11 30 4 12 24 4 14 37 4 15 42 4 17 26 4 18 28 4 19 44 4 20 33 4 21 25 4 23 34 4 27 40 4 29 31 4 32 35 4 39 43 5 6 45 5 7 16 5 8 46 5 10 24 5 12 26 5 13 28 5 14 29 5 15 37 5 17 42 5 19 32 5 21 40 5 23 44 5 25 35 5 27 33 5 30 31 5 34 36 5 38 39 5 41 43 6 7 23 6 8 32 6 9 38 6 10 16 6 11 39 6 14 22 6 17 43 6 18 26 6 19 40 6 20 35 6 21 44 6 24 29 6 25 27 6 28 37 6 30 33 6 31 41 6 34 42 7 8 45 7 9 25 7 10 27 7 12 31 7 13 39 7 14 41 7 18 29 7 19 38 7 20 34 7 22 36 7 24 43 7 26 44 7 28 30 7 32 37 7 33 35 7 40 42 8 9 28 8 10 11 8 12 27 8 14 24 8 15 35 8 16 31 8 17 22 8 18 36 8 20 30 8 21 37 8 23 40 8 25 39 8 26 38 8 29 43 8 33 42 8 34 44 9 10 45 9 11 18 9 12 46 9 13 29 9 15 27 9 16 39 9 17 36 9 19 22 9 20 26 9 21 31 9 24 37 9 30 41 9 32 42 9 33 43 9 34 40 9 35 44 10 12 37 10 13 46 10 14 33 10 15 32 10 18 40 10 20 44 10 21 39 10 22 41 10 23 31 10 25 29 10 26 42 10 28 43 10 30 36 10 34 35 11 12 45 11 13 25 11 14 46 11 15 40 11 16 20 11 17 32 11 19 24 11 21 36 11 22 44 11 23 29 11 26 43 11 27 31 11 28 34 11 33 38 11 35 42 11 37 41 12 13 43 12 14 39 12 15 29 12 17 28 12 19 33 12 20 42 12 21 38 12 22 23 12 30 34 12 32 41 12 35 40 12 36 44 13 14 45 13 15 24 13 16 21 13 17 33 13 18 44 13 19 42 13 20 37 13 22 30 13 23 32 13 26 35 13 31 38 13 34 41 13 36 40 14 15 44 14 16 40 14 17 38 14 19 28 14 21 34 14 23 42 14 25 43 14 26 27 14 30 35 14 32 36 15 16 45 15 17 31 15 18 46 15 19 26 15 21 41 15 22 28 15 23 38 15 25 34 15 30 43 15 33 39 16 18 34 16 19 46 16 22 38 16 23 25 16 24 36 16 26 30 16 27 44 16 28 29 16 32 33 16 35 43 16 37 42 17 18 45 17 19 34 17 20 46 17 21 23 17 24 25 17 27 35 17 29 41 17 30 40 17 39 44 18 20 22 18 21 33 18 23 30 18 24 27 18 25 32 18 31 39 18 35 41 18 37 43 18 38 42 19 20 45 19 21 35 19 23 36 19 25 30 19 27 43 19 31 37 19 39 41 20 21 43 20 23 41 20 24 32 20 25 31 20 27 36 20 28 40 20 29 38 21 22 45 21 24 46 21 27 42 21 30 32 22 24 42 22 25 46 22 26 37 22 29 39 22 31 34 22 32 40 23 24 45 23 26 46 23 27 39 23 35 37 24 26 31 24 28 44 24 33 40 24 35 39 25 26 45 25 28 42 25 33 37 25 36 41 26 28 32 26 29 40 26 34 39 27 28 45 27 29 37 27 30 46 27 38 41 28 31 46 28 33 41 28 36 38 29 30 45 29 32 46 29 33 44 29 36 42 30 37 39 31 32 45 31 36 43 31 40 44 32 38 44 33 34 45 33 36 46 34 37 46 34 38 43 35 36 45 35 38 46 37 38 45 39 40 45 39 42 46 40 43 46 41 42 45 41 44 46 43 44 45