An APPTS(35) on the point set {A,B,0,1,2,...,32} with a hole {0,1,2,A,B}, and with the property that the addition of any of the 10 triples from the hole will not generate a Pasch configuration. With the addition of blocks A12 and B02 it becomes a generically labelled APMMPTS(35). The point A is represented as 33 and B as 34. There are no blocks {2,x,x+4} with arithmetic mod 33. The {A,B}-cycles are (3,4,7,8,5,6)+6k, k=0,1,2,3,4. By adding the further triples AB1 and A01 to the APMMPTS(35), the design is converted to an APMMCT(35) with thrice repeated pair A1. missing pairs 0 1 0 2 0 33 0 34 1 2 1 33 1 34 2 33 2 34 33 34 number of missing pairs = 10 list of blocks 0 3 8 0 4 9 0 5 11 0 6 13 0 7 15 0 10 17 0 12 19 0 14 21 0 16 23 0 18 25 0 20 27 0 22 29 0 24 28 0 26 32 0 30 31 1 3 10 1 4 18 1 5 9 1 6 19 1 7 14 1 8 31 1 11 32 1 12 22 1 13 20 1 15 30 1 16 28 1 17 26 1 21 27 1 23 29 1 24 25 2 3 11 2 4 27 2 5 17 2 6 29 2 7 10 2 8 22 2 9 16 2 12 30 2 13 24 2 14 31 2 15 26 2 18 28 2 19 25 2 20 23 2 21 32 3 4 33 3 5 15 3 6 34 3 7 19 3 9 21 3 12 23 3 13 25 3 14 27 3 16 29 3 17 31 3 18 24 3 20 26 3 22 28 3 30 32 4 5 19 4 6 22 4 7 34 4 8 14 4 10 30 4 11 31 4 12 13 4 15 24 4 16 26 4 17 29 4 20 28 4 21 23 4 25 32 5 6 33 5 7 22 5 8 34 5 10 23 5 12 27 5 13 32 5 14 24 5 16 25 5 18 30 5 20 21 5 26 28 5 29 31 6 7 26 6 8 11 6 9 18 6 10 32 6 12 20 6 14 25 6 15 31 6 16 30 6 17 24 6 21 28 6 23 27 7 8 33 7 9 30 7 11 24 7 12 31 7 13 16 7 17 27 7 18 20 7 21 29 7 23 25 7 28 32 8 9 26 8 10 12 8 13 28 8 15 20 8 16 17 8 18 29 8 19 21 8 23 30 8 24 32 8 25 27 9 10 33 9 11 28 9 12 34 9 13 15 9 14 17 9 19 23 9 20 29 9 22 24 9 25 31 9 27 32 10 11 18 10 13 34 10 14 16 10 15 28 10 19 26 10 20 31 10 21 25 10 22 27 10 24 29 11 12 33 11 13 29 11 14 34 11 15 23 11 16 27 11 17 21 11 19 22 11 20 25 11 26 30 12 14 18 12 15 21 12 16 32 12 17 28 12 24 26 12 25 29 13 14 33 13 17 19 13 18 23 13 21 30 13 22 26 13 27 31 14 15 22 14 19 30 14 20 32 14 23 28 14 26 29 15 16 33 15 17 25 15 18 34 15 19 32 15 27 29 16 18 21 16 19 34 16 20 22 16 24 31 17 18 33 17 20 34 17 22 30 17 23 32 18 19 31 18 22 32 18 26 27 19 20 33 19 24 27 19 28 29 20 24 30 21 22 33 21 24 34 21 26 31 22 23 31 22 25 34 23 24 33 23 26 34 25 26 33 25 28 30 27 28 33 27 30 34 28 31 34 29 30 33 29 32 34 31 32 33