An APPTS(23) on the point set {A,B,0,1,2,...,20} with a hole {0,1,2,A,B}, and with the property that the addition of any of the 10 triples from the hole will not generate a Pasch configuration. With the addition of blocks A12 and B02 it becomes a generically labelled APMMPTS(23). The point A is represented as 21 and B as 22. There are no blocks {2,x,x+4} with arithmetic mod 21. The {A,B}-cycles are (3,4,7,8,5,6)+6k, k=0,1,2. By adding the further triples AB1 and A01 to the APMMPTS(23), the design is converted to an APMMCT(23) with thrice repeated pair A1. missing pairs 0 1 0 2 0 21 0 22 1 2 1 21 1 22 2 21 2 22 21 22 number of missing pairs = 10 list of blocks 0 3 8 0 4 9 0 5 11 0 6 13 0 7 15 0 10 17 0 12 16 0 14 20 0 18 19 1 3 10 1 4 13 1 5 9 1 6 12 1 7 11 1 8 19 1 14 18 1 15 20 1 16 17 2 3 11 2 4 16 2 5 20 2 6 15 2 7 17 2 8 13 2 9 14 2 10 19 2 12 18 3 4 21 3 5 15 3 6 22 3 7 19 3 9 17 3 12 13 3 14 16 3 18 20 4 5 19 4 6 14 4 7 22 4 8 18 4 10 15 4 11 17 4 12 20 5 6 21 5 7 14 5 8 22 5 10 18 5 12 17 5 13 16 6 7 9 6 8 17 6 10 20 6 11 19 6 16 18 7 8 21 7 10 12 7 13 18 7 16 20 8 9 16 8 10 14 8 11 20 8 12 15 9 10 21 9 11 18 9 12 22 9 13 20 9 15 19 10 11 16 10 13 22 11 12 21 11 13 15 11 14 22 12 14 19 13 14 21 13 17 19 14 15 17 15 16 21 15 18 22 16 19 22 17 18 21 17 20 22 19 20 21